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ABSTRACT 
Structural health monitoring (SHM) is the process of monitoring structural health and 

identifying damage existence, severity and location. Clear needs for SHM exist for various types 
of civil structures; e.g., approximately 25% of U.S. bridges are rated as deficient and require 
significant expenditures to rebuild or replace them (FHWA, 2002).  Yet, the dominant method 
for monitoring the health of civil structures is manual visual inspection. Global vibration-based 
SHM techniques have been studied, but no approach has been well established and accepted due 
to limitations of ambient excitation for most civil structures and the small sensitivity of global 
vibration characteristics to damage. One approach that may alleviate some of the SHM 
difficulties for civil structures is using variable stiffness and damping devices (VSDDs) — 
controllable passive devices that received significant study for vibration mitigation — to improve 
damage estimates.  In addition to providing near optimal structural control strategies for 
vibration mitigation, these low-power and fail-safe devices can provide parametric changes to 
increase global vibration measurement sensitivity for SHM.  

This report proposes using VSDDs in structures to improve SHM, and demonstrates the 
benefits analytically and experimentally in contrast with conventional passive structures.  A 
2DOF bridge structure model and two shear building models (2DOF and 6DOF), are used as test 
beds to study the VSDD approach analytically in the context of an iterative parametric frequency 
domain identification. Using data from multiple VSDD configurations, and using multiple 
channels of data, a least-squares error formulation is used to estimate unknown structural 
parameters. The improvements in identification are quite effective when adding high effective 
levels of stiffness or damping to a structural system, though the resulting VSDD forces are small 
due to the low levels of ambient excitation. The VSDD approach is also studied using the 
Eigenvalue Realization Algorithm. In the experimental part of this study, a 2DOF shear building 
structure is excited using a small shaking table and the building parameters are identified. 
Results show that using VSDDs in identification gives parameter estimates that have more 
accurate means and smaller variations than the conventional structure approach.  

Keywords: structural health monitoring, variable stiffness and damping devices, parametric 
frequency-domain identification, damage detection. 
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1 INTRODUCTION
Detecting damage in structures at an early stage, 

before they deteriorate, is vital to protecting structures. 
Generally, damage may be caused by acute events, such as
earthquakes and other natural disasters, or by long-term 
degradation from environmental effects and human use 
(and abuse). Whatever the cause, structural damage can 
threaten both danger to human life and risk huge economic 
losses. Consequently, a process that can detect damage as 
early as possible would be extremely useful. The process of 
monitoring structural health and identifying damage 
existence, severity and location is generally termed 
structural health monitoring (SHM). Chang (1999) defined 
structural health monitoring to be an “autonomous [system] 
for the continuous monitoring, inspection, and damage 
detection of [a structure] with minimum labor 
involvement.” 

The SHM process includes system identification as a 
major step. Thus, high fidelity modeling and accurate 
response estimation are required to monitor the changes of 
structural characteristics and response and, subsequently, 
predict the onset of failure or the expected remaining life. 
With identification at different points in time —
periodically or shortly after natural disasters — changes in 
these characteristics may be monitored. With damage 
models, changes in structural characteristics are used to 
predict damage severity and location. This study proposes 
using smart, controllable passive devices such as Variable 
Stiffness and Damping devices (VSDDs) in structures to 
improve SHM, and demonstrates the benefits over 
conventional passive structures.

1.1 SHM Benefits, Difficulties and 
Suggestions

Robust SHM systems are essential needs for both 
building and bridge structures: significant expenditures 
were reported after the 1994 Northridge and the 1995 Kobe 
earthquakes in inspecting hidden damage in joints of steel buildings for damage (e.g., Fig. 1-1 to 
Fig. 1-3) (Mita, 1999); a recent report to the U.S. Congress by the Federal Highway 
Administration (FHWA, 2002) indicates that approximately 25% of the bridges in the U.S. are 
rated as deficient and will require huge annual expenses for repair (Patten et al., 1999).

One approach to SHM is based on global vibration methods. Many global vibration SHM 
studies assume a class of mathematical models that may represent the actual structure. Generally, 
studies have focused on identifying changes in modal parameters obtained from measured 
vibration response; state-of-the-art surveys of global vibration SHM techniques applied to civil 

  Fig. 1-1. Beam-column connection 
damage (Kiremedjian, 1999)

Fig. 1-2. Cracks through column 
flange and extending into web 

(Hall, 1995)

Fig. 1-3. Plastic hinging at top
of column (Hall, 1995)



 2 

engineering are given by Doebling et al. (1996, 1998). Unfortunately, no global technique has 
been well established and accepted as an overall successful approach (Sanayei et al., 1998). This 
may be attributed to several reasons including (i) models cannot exactly predict the full behavior 
of real structures, (ii) periodic environmental effects, such as thermally-induced variations, may 
mask the effects of damage on global vibration characteristics, (iii) measurement noise can cause 
significant variation from one test to the next, (iv) excitation is limited to ambient sources for 
most civil structures, and (v) the sensitivity of global vibration characteristics to damage may be 
small. These all lead to variations in the identified model parameter characteristics that are not 
due to true changes in the structure, raising uncertainty in damage estimates (Vanik et al., 2000). 

Using forced structural response strategies, some of the aforementioned problems can be 
overcome: e.g., for structures with embedded active vibration control systems, the actuators can 
be used to enhance damage detection by tuning the actuation signals to directly increase closed-
loop damage sensitivity of global vibration characteristics (Ray and Tian, 1999). However, large 
actuation devices are not being used in a continuous manner for civil structures (except a few 
isolated cases in Asia) due to large power requirements, concerns about stability and so forth, 
rendering them impractical for damage mitigation or SHM of civil structures. 

As a consequence, in order to perform SHM, one is restricted to analyzing response to 
ambient excitation that takes a number of forms (e.g., wind, traffic, waves and microtremors). 
Ambient excitation has several advantages over approaches using forced vibration response. For 
low amplitude excitations typically experienced during ambient vibration, most structural 
systems are well characterized with linear models. Further, continuous ambient vibration tests 
can be performed at a very low cost. However, due to small structural response under such 
ambient excitations, measurement signal-to-noise ratios are small enough to make SHM difficult.   

One approach that may help alleviate some of the SHM difficulties for civil structures 
would be to use “smart” variable stiffness and damping devices (VSDDs) — controllable, low-
power and fail-safe passive devices that have received significant study for vibration mitigation 
(Spencer and Sain, 1997; Symans and Constantinou, 1999) — in a synergistic manner to provide 
internal parametric changes to affect sensitivity to damage. Further, the integration of smart 
damping and SHM can exploit, in a synergistic manner, the common aspects of both 
technologies as seen in the flowcharts in Fig. 1-4.  

 

Model 

Sensors Controllers Sensors 

Control Actuators 

Controlled Energy 
Dissipation 

 

Excitation Structure Response 
 
 
 
 
 

Variable Stiffness/Damping 

Model 

Sensors Monitoring Sensors 

Excitation Structure Response 
 
 
 
 
 

Structural Health Monitoring 

Health Indication 

Exciter 

 
Fig. 1-4. SHM and variable stiffness/damping flow charts 



 3 

 
Fig. 1-5. Mutual benefits of SHM and VSDDs 

VSDDs can adjust the behavior of a structure by real-time modification of stiffness and 
damping at discrete points within the structure. By commanding different behavior for each 
VSDD in a structure, multiple structural configurations can be tested, each of which can be 
designed to increase the sensitivity to damage in different portions of the structure (see Fig. 1-5).  

1.2 Overview of the VSDD/SHM Research Studied Herein 
This study proposes using VSDDs in structures to improve SHM, and demonstrates the 

benefits in contrast with conventional passive structures. The focus herein is introducing a better 
approach for estimating the structural dynamic parameters through the use of variable stiffness 
and damping devices. The study is divided into two parts. The first part is an analytical study of 
the benefits of applying VSDDs in SHM. The second part studies the VSDD approach benefits 
from an experimental perspective. Since controllable stiffness/damping devices are used to give 
the parametric changes necessary for improved monitoring, the structural models must be 
control-oriented dynamic models — i.e., low-order models that still capture most of the salient 
dynamic characteristics of a real structure, particularly in locations of the controllable devices 
and in the frequency ranges driven by the excitation.  

Using different identification techniques to investigate the use of VSDDs for SHM gives a 
broad view of how VSDDs are useful. In this study, the VSDDs are first investigated in the 
context of parametric frequency domain identification methods to determine structural 
parameters. An iterative method, previously proposed in METRANS report 01-10 (Johnson and 
Elmasry, 2003), is used first; this identification method expresses the structural system transfer 
functions in terms of the unknown structural parameters, and then iteratively uses a procedure to 
minimize the numerators of the error between the theoretical transfer function and the measured 
ones (in each iteration, using the denominator evaluated using the previous parameter estimates). 
Then, another parametric frequency domain method, denoted INVFLS herein, is introduced. 
INVFLS first identifies the polynomial coefficients of the transfer functions, using a multi-input 
multi-output extension, developed herein, to the invfreqs function in MATLAB for single-input 
single-output transfer functions; then, INVFLS obtains the structural parameters from direct 
relations with the polynomial coefficients. In addition, one subspace identification method, the 
Eigensystem Realization Algorithm (ERA) technique, is also used to study the benefits of the 
VSDD approach over the conventional structure approach. The numerical examples herein use a 
fairly noisy signal to challenge the methods. 

 In the analytical part (Chapters 3, 4 and 5), several structures are studied, with one or more 
VSDDs installed. First, two degree-of-freedom (2DOF) and then six-degree-of-freedom (6DOF) 
shear building structural models are studied, each in several configurations: the 2DOF structure 
with a VSDD in (i) the first story, (ii) the second story, and (iii) both stories, and the 6DOF 
building with VSDDs in the first three stories. Then, a 2DOF bridge structure model (Erkus et 
al., 2002) is studied with a VSDD attached in the bearing layer between the pier and the deck. In 
each case, the VSDD is chosen to act as an ideal variable stiffness/damping device, with one of 
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several discrete stiffness/damping values. These devices are located in the structures in the form 
of lateral bracing or, in the bridge example, in the isolation layer between the bridge deck and the 
pier supports.  

Using the least squares approach on the modified version of the error in transfer functions 
with known starting guesses, both using VSDD and conventional identification techniques give 
parameter estimates. METRANS report 01-10 (Johnson and Elmasry, 2003) introduced one 
approach for estimating structural parameters using low force levels in the VSDDs — up to 40% 
of the stiffness/damping of the corresponding story.  While the previous study demonstrated that 
VSDDs can improve damage characterization, giving more accurate mean estimates and smaller 
estimate mean square errors, its improvements were modest. However, Chapter 3 in this study 
shows that the VSDD approach with higher levels of additional stiffness/damping, several times 
that of the corresponding stories, dramatically improves the estimate accuracy, reducing 
identification error significantly compared to the conventional structure approach. The VSDD 
force levels are shown to be quite reasonable and well within the capabilities of VSDDs 
developed to date. 

In addition, Chapter 4 shows that using a two-stage least squares identification — first 
identifying the coefficients of the transfer function polynomials and then the structural 
parameters — gives results slightly better than the conventional approach. Moreover in Chapter 
5, using the ERA technique, it is found that the root mean square error (RMSE) of the estimated 
structure stiffnesses is also reduced, indicating more accurate results. 

In the experimental part of this study (Chapter 6), a 2DOF shear building structure, 
composed of vertical aluminum plates and horizontal plexi-glass plates, with weak springs 
elements in the diagonal bracing, is the test bed of the study. A small shake-table excites the 
structure to replicate ambient ground motion. The ground acceleration takes two forms: a band 
limited white noise and a filtered band limited white noise. The effects of VSDDs in the structure 
are replicated by adding a set of stiff springs in the diagonal bracing. The outcome of the 
experimental study is found to validate the improvements exhibited in the analytical study. The 
VSDD approach gives better means and smaller variations, whereas the conventional structure 
approach indicated less confidence in its results. 

Finally, the conclusions (Chapter 7) summarize the results and provide some thoughts on 
future directions of this work. 
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2 SUMMARY OF PREVIOUS WORK 
The contents of this METRANS report 03-17 follow the initial study in the METRANS report 

01-10 (Johnson and Elmasry, 2003). METRANS report 01-10 studied the effectiveness of using 
variable stiffness and damping devices (VSDDs) to improve estimates of structural parameters 
for structural health monitoring and damage detection. VSDDs are controllable passive devices 
that have been shown to have significant potential for mitigating structural response to natural 
hazards. Previous work in METRANS report 01-10 demonstrated that VSDDs also have strong 
promise for use in SHM as well. Since VSDDs can be commanded to exert various force time 
histories, the response of a structure may be altered through the parametric changes effected by 
the VSDDs.  

METRANS report 01-10 investigated VSDD/SHM by identifying structural parameters — 
mass, stiffness and damping coefficients — based on measured absolute acceleration transfer 
function data, using a parametric frequency-domain least-squares identification method. For each 
numerical example and configuration, the structural parameters were identified, first with one or 
more VSDDs in the structure, and then with no VSDDs. In all cases, simulated sensor noise was 
added to the exact transfer function to replicate the noisy transfer functions that are typically 
obtained through standard experimental techniques. In each VSDD configuration, data is 
collected while the VSDDs are commanded to act in one of several discrete stiffness or damping 
modes, with different noise corrupting each subsequent data set. To make for a fair comparison, 
the conventional structure approach was provided with the same amount of data. The variation in 
identified structural parameters due to the effects of random noise were studied by performing 
these identifications a number of times, each with a different random seed to generate the noise, 
giving a measure of both the mean and the variance of the structural parameter estimates. 

While the VSDD approach is applicable to a wide variety of structural identification 
methodologies, it was studied in METRANS 01-10 in the context of a least-squares identification 
using the frequency-domain transfer function representation of the input/output dynamics of a 
structure. It was shown that one commonly-used simplification of this identification method 
gives biased results, and an alternate iterative approach is shown to give superior results. A 
summary of the iterative least squares numerator (ILSN) method from METRANS 01-10 is 
introduced in the following section. 

2.1 Iterative-Least Squares Numerator Method (ILSN) 
The transfer functions generally are defined by the ratio between the Fourier transforms of 

the output and input signals. For example, consider a linear structural model of the form: 

 Mx+Cd x+Kx = bf ,        y =C1x+C2 x+df + v  (2-1) 

where M, K, and Cd are the mass, stiffness and damping matrices of the system, and C1, C2, and 
d are the output influence matrices for the displacement, velocity and the external scalar force f. 
Similarly, one can write the model in state-space form 

 
q = Aq+ Bf
y =Cq+Df + v

 (2-2) 

where q = [xT xT ]T  is the state vector, A  is the system state matrix that is dependent on the 
mass, damping, and stiffness matrices, B  is the input influence matrix, C is the output influence 
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matrix, and D is the direct transmission matrix. In both equations, f is an excitation force, and y 
is an M ×1 vector of measured responses corrupted by M ×1  sensor noise vector v.  

Thus, the system can be represented by the M ×1 transfer function matrix H(jω). Each 
element of H(jω) can be expressed as the ratio of numerator and denominator polynomials at a 
certain frequency with coefficients depending on matrices in Eqs. (2-1) or (2-2). The transfer 
function vector from a single input to the outputs can, consequently, be written in polynomial 
ratio form as: 
 H( jω) = B( jω) / A( jω)  (2-3) 

where B(jω) and A(jω) are the numerator and denominator polynomials 

  
Bm ( jω) = bnB−1

(m) ( jω)nB−1 + bnB−2
(m) ( jω)nB−2 +…+ b0

(m)

   A( jω) =         ( jω)nA    + anA−1( jω)nA−1 +…+ a0

 (2-4)  

where the b’s and a’s are real coefficients. 
Assuming that the transfer function has been determined experimentally through standard 

procedures from measured input and output data (Bendat and Piersol, 2000), the experimental 
transfer function matrix, expressed as 

 Ĥ( jω p ) ,  p = 1, 2, …,  

€ 

nω  (2-5) 

is known at nω  discrete frequency points. Therefore, the difference between the estimated 
theoretical transfer function H(jω) and the actual experimental one Ĥ( jω)  represents the error 
equation, which is then used in the parameter identification process. 

For a structure with one or more variable stiffness and/or damping devices, the properties of 
which are determined through a local control system, some of the coefficients in the transfer 
function polynomials may be adjusted through changing the VSDD control algorithms. Thus, it 
is convenient to introduce notation to explicitly state that the transfer function polynomials are 
functions of unknown structural parameters, denoted by the vector θ , which are to be estimated, 
and of known controllable structural parameters, denoted by the vector κ . The transfer function 
expression can, then, be written as explicit function of these unknown and known structural 
parameters 

 H( jω) = B( jω,θ,κ) / A( jω,θ,κ)  (2-6) 

For a given structural model, the A and B polynomials are specific known functions of their 
parameters. Substituting the measured TF in place of the exact TF leaves a residual error e that 
may be defined by 

 e(jω p,θ,κ) =
B(jω p,θ,κ)− A(jω p,θ,κ)Ĥ(jω p,κ)

A(jω p,θ,κ)
 (2-7) 

A conventional least-squares approach may be adopted to solve this problem, forming a global 
square error 

 Δ2 (θ) = e*( jω p,θ,κ) ⋅ e(jω p,θ,κ)
p=1

nω

∑ = e(jω p,θ,κ)
2

p=1

nω

∑  (2-8) 
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where (·)* denotes complex conjugate transpose. The optimal choice of the unknown parameters 
is found by minimizing the square error — i.e., take the partial derivatives of the square error Eq. 
(2-8) with respect to the elements of unknown vector θ , set the derivatives equal to zero, and 
solve the resulting (generally nonlinear) equations. However, if there are known controllable 
structural parameters in a structure with multiple configurations — which is the case when using 
VSDDs — the square error equation can be augmented by using several combinations of known 
controllable structural parameters 

 Δ2 (θ) = e*(jω p,θ,κk ) ⋅ e(jω p,θ,κk )
p=1

nω

∑
k
∑  (2-9) 

where the symbol κk  denotes one of multiple distinct sets of parametric changes to the structure. 
The error is, then, minimized simultaneously for all configurations. 

Because the residual error e in Eq. (2-7) is a ratio of polynomials, the square error in Eq. 
(2-9) is an extremely complex function of the unknown parameters θ . Thus, to avoid bias, and 
to avoid the difficulty in solving the least-squares problem for the standard error measure e, an 
iterative method is adopted, using an approximation to the denominator in Eq. (2-7). 

Assume that iteration i begins with a starting approximation θ̂i−1  to the unknown parameter 
vector θ ; then, the denominator of Eq. (2-7) is estimated based on the vector θ̂i−1  of estimated 
parameters and is no longer a function of these unknowns, but only in the frequency and the 
multiple distinct sets of parametric changes to the structure 

 Âi (jω p,κk ) ≡ A(jω p, θ̂i−1,κk )  (2-10) 

The error is, thus, formed as: 

 êi (jω p,θ,κk ) =
B(jω p,θ,κk )− A(jω p,θ,κk )Ĥ(jω p,κk )

Âi (jω p,κk )
 (2-11) 

and the squared error takes the form 

 Δi
2 (θ) = êi*(jω p,θ,κk ) ⋅ êi (jω p,θ,κk )

p=1

nω

∑
k
∑  (2-12) 

Minimizing the sum of the square error in Eq. (2-12) will result in an updated estimate 

€ 

ˆ θ i  to 
the unknown parameter vector θ . The iterations continue until the relative differences between 
θ̂i−1  elements and the corresponding elements of θ̂i  are all below some threshold. (Absolute or 
relative norms of the difference could also be used.) A maximum number of iterations may also 
be set to stop the algorithm in the case that the iterative method does not converge (though this 
termination criterion was not required in this study as convergence always occurred within a 
limited number of iterations). This iterative least-squares identification, with and without 
VSDDs, was applied to several numerical examples: a bridge pier/deck model and two shear 
building models. A summary of these examples follows. 

2.2 Numerical Test Beds 
In METRANS 01-10 (Johnson and Elmasry, 2003) as well as in Chapters 3–5 of this report, 

three numerical examples are used as test beds of the VSDD/SHM approach. This section 
describes these examples. 
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2.2.1 Two Degree-of-Freedom Shear Building Model
Consider the two degree-of-freedom (2DOF) shear 

building structure model shown in Fig. 2-1. The structure 
is subject to ambient excitation from the ground. Absolute 
acceleration measurements of the ground, !!xg , and of the 
two floors, (!!x1 + !!xg ) and (!!x2 + !!xg ) , are used to generate a 
2!1 experimental transfer function at n! distinct 
frequency values. (Note that x1 and x2 herein denote the 
displacements of the floors relative to the ground.)  Let 
the unknown parameter vector be given by:

! =
k1
m1

k2
m 2

c1
m1

c2
m2

m2

m1

"

#
$
$

%

&
'
'

T

(2-13)

A VSDD that can provide a number of distinct 
stiffness levels is located in the first, second, or both 
stories of the structure. The VSDD is installed in the 
lateral bracing of the structure and the mechanical properties of the dampers are modified 
according to control algorithms, which utilize the measured response of the structure. The device 
is considered ideal and semiactive; i.e., it can generate the desired forces with no delay and with 
no actuator dynamics (Ramallo et al., 2000).

Therefore, the known controllable vector is related to the stiffness of a variable stiffness 
device such that

! =! = kVSDD /m1 (2-14)

or to the damping coefficient of a variable damping device

! =! = cVSDD /m1 (2-15)

Then, the theoretical transfer function can be written in the polynomial form as:

H(j!," ) = B1(j!,!," )
A(j!,!," )

B2 (j!,!," )
A(j!,!," )

"

#
$
$

%

&
'
'

T

(2-16)

The parameter identification methods discussed in the previous section can then be applied. The 
explicit reference to m1 has dropped out of the transfer function polynomials; it is assumed here 
that of all the parameters, only m1 is known. Different VSDD locations in the structure are 
studied in order to investigate the best way of using these VSDDs to improve SHM through 
better identification of the structural model parameters. Accordingly, this example is also solved 
considering a VSDD located in the second story of the structure and in both stories as well, as 
shown in Fig. 2-2 and Fig. 2-3.

In the numerical examples of this model, the masses and stiffnesses are taken of unit 
magnitude and the damping coefficients are taken as 0.05 kN!s/m.

x2

k2,c2

k1,c1

x1

m2

m1

Fig. 2-1. 2DOF shear building model
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x1

x2 m2

m1

gx!!

k2,c2

k1,c1

Fig. 2-2. VSDD in 2nd story of 2DOF model

x2

k2,c2

k1,c1

x1

m2

m1

gx!!
Fig. 2-3. VSDDs in both stories of 2DOF model

2.2.2 Two Degree-of-Freedom Pier-Deck Bridge Model
Consider a bridge structure such as the one shown in Fig. 

2-4, which is a typical elevated highway bridge that consists of 
decks, bearings, and piers. The behavior of the bridge deck and 
piers, with a bearing between them, while complex, can be well 
approximated with the simple 2DOF model shown in Fig. 2-6c. 
This 2DOF model may be used to represent a passive system 
with rubber bearings if the girder is continuous with one pier and 
one bearing, or for several piers and bearings with identical 
properties. Also, this model can be used for VSDD systems if the 
devices are attached as shown in Fig. 2-5 and commanded to 
provide identical force levels. It is assumed in this problem that 
the pier mass m1 is known.

The theoretical polynomial transfer function matrix 
H(j!," ) is defined similarly to Eq. (2-3) where, here, 
B1(j!,!," ) A(j!,!," ) is the transfer function between the 
ground acceleration and the absolute acceleration of the pier and 
B2 (j!,!," ) A(j!,!," ) is the transfer function between the 
ground acceleration and that of the bridge deck. The unknown 
parameter vector ! is defined similarly to Eq. (2-13). The vector of known parameters !
denotes the additional stiffness and/or damping added through the VSDD connected between the 
pier and the deck. In the simulations, the installed VSDD is 
assumed to provide additional stiffness or damping at various 
discrete levels.

Numerical parameters for this model, drawn from Erkus 
et al. (2002), are considered as an illustrative example:  
k1 = 15.791 MN/m, k2 = 7.685MN/m, m1 = 100 Mg (tons), 
m2 = 500 Mg, c1 = 125.6 kN!s/m, and c2 = 196 kN!s/m.

VSDD VSDD

Deck

Pier Pier

Fig. 2-4. High occupancy 
vehicle (HOV) lanes during 
construction (ADOT, 2001)

Fig. 2-5. VSDD placement in bridge
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or

Pier

Bearing

Deck

(b)(a)

Pier

Bearing

Deck

(c)

Bearing
k2,c2

Pier k1,c1

Deck

m1

m2

x2

x1

Fig. 2-6. 2DOF bridge model

2.2.3 Six Degree-of-Freedom Shear Building Model
To demonstrate that these methods can be extended to more complex problems, a six 

degree-of-freedom shear building model is also studied. This 6DOF model 
system identification was solved using variable stiffness VSDDs and a 
conventional structure (no VSDDs). In simulation, each installed VSDD is 
assumed to provide additional stiffness at various discrete levels. The 
VSDD devices included in the structure are also considered ideal; i.e., they 
can generate the desired forces with no delay and with no actuator 
dynamics. In this problem, the VSDDs are considered to be located in the 
first three stories only, as shown in Fig. 2-7. 

In the numerical example of this 6DOF model, the stiffnesses and 
masses are taken as unity and the damping coefficients are taken as 0.05 
kN!s/m. The masses are assumed known a priori. The unknown parameter 
vector ! for the six degree-of-freedom model is, then, a set of unknown 
stiffness ki and damping ci coefficients as follows:

! = [ k1 k2 k3 k4 k5 k6 c1 c2 c3 c4 c5 c6 ]
T

(2-17)

2.3 Prior Results
The results in METRANS report 01-10 definitely showed that there is the potential for 

VSDDs to make a real contribution to structural health monitoring. When a VSDD acts as a 
discrete multi-level damping element with coefficient smaller than that of the structure, only 
little improvement is gained over the conventional structure approach, probably due to the very 
low force levels for damping VSDDs. In contrast, the discrete stiffness behavior, with small 
VSDD stiffness, is shown to modestly improve estimates of the structure stiffness and damping 
coefficients, particularly for the more complex numerical example with several VSDDs. 
However, since the response to ambient excitation sources is, generally, quite low, the force 
levels of the VSDDs in the previous study were very small — in fact, orders of magnitude 
smaller than the forces the structure is designed to withstand and two orders of magnitude 
smaller than the peak forces capable with current VSDD technology. Consequently, the VSDDs, 
especially in the discrete damping mode, were less effective than would likely occur if they were 
commanded to use larger force levels (but still moderate compared to the structural capacity). 

Fig. 2-7. 6DOF 
model with VSDDs 
in first three stories
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Thus, the contents in Chapter 3 of this report, METRANS 03-17, demonstrate that larger force 
levels will give further improvement in identifying structural parameters. Moreover, to show the 
general applicability of using VSDDs in structural identification (i.e., it is not just useful in the 
context of the iterative least squares identification discussed in Chapter 3), Chapters 4 and 5 
study the effectiveness of using the VSDDs approach when different identification methods are 
used. Finally, an experimental verification of the analytical results is detailed in Chapter 6. 

 
 



12 

3 PARAMETRIC FREQUENCY DOMAIN IDENTIFICATION 
USING LARGER VSDD STIFFNESS/DAMPING FORCES 

3.1 Introduction 
To improve the advantages of the VSDD approach, larger VSDD stiffness/damping levels 

may be used. This Chapter studies and verifies the effect of adding higher levels of VSDD 
stiffness or damping to a structural system for improving the system identification process. The 
iterative least squares (ILSN) method is used for identification of parameters in the numerical 
test beds described in Chapter 2. The primary test bed here is the 2DOF bridge model, however, 
some results for the 2DOF and 6DOF shear building models are also given. 

3.2 2DOF Bridge Model 
Previous studies in METRANS report 01-10 (Johnson and Elmasry, 2003) investigated the 

effects of VSDDs operating in variable stiffness or damping modes on the 2DOF bridge model; 
however, the levels of stiffness or damping of the VSDD device were limited to 0%, 10%, 20%, 
30%, and 40% of that of the isolator between the bridge deck and the pier. In contrast, the 
VSDDs in this section are assumed to: (i) add {0,1,2,3,4} times the bearing stiffness, (ii) add 
{0,5,10,15,20} times the bearing stiffness, (iii) add {0,25,50,75,100} times the bearing damping, 
and (iv) add {0,100,200,300,400} times the bearing damping.  The structure stiffness and 
damping estimates from 100 response time histories, using conventional and VSDD approaches, 
are shown in Fig. 3-1 and the statistics in Table 3-1. Fig. 3-1a,b,e,f show the stiffness estimates 
and Fig. 3-1c,d,g,h show the damping estimates. Contour lines of 1σ, 2σ and 3σ are shown with 
solid lines. 

Increasing the level of stiffness that the VSDD induces at the isolator level decreases 
dramatically the variation of the relative error of stiffness coefficients estimation as shown in 
Fig. 3-1a,b. In addition, the variation of the relative error of the damping coefficients estimation, 
as seen in Fig. 3-1c,d, improves considerably compared to cases of lower levels of induced 
VSDD stiffness, though the improvement is limited and the damping coefficient estimation error 
is up to 5–10%. For the case of varying VSDD damping, it is shown in Fig. 3-1e,f that the 
estimation of the stiffness coefficients are improved by increasing the damping levels. Moreover, 
the variation of the relative error decreases dramatically at highest level of damping (Fig. 3-1f). 

Table 3-1. Estimate Means and Root Mean-Square Error Percentage for 2DOF 
Pier-Deck Bridge Model Using Highest Levels of Induced Stiffness or Damping 

VSDD 
Loc. 

Struct. 
Param. 

Exact 
Values 

Mean RMSE(%) 
No 

VSDD 
Add 

kVSDD

Add 
cVSDD

No 
VSDD 

Add 
kVSDD

Add 
cVSDD

One 
VSDD 
in the 

bearing 
between 

deck 
and pier

k1 [MN/m] 15.791 15.726 15.791 15.791 1.634 0.034 0.013 
k2 [MN/m] 7.685 7.507 7.683 7.685 3.484 0.160 0.027 
c1 [kN·s/m

]
125.6 110.8 124.8 125.4 17.931 1.499 1.846 

c2 [kN·s/m
]

196 192.8 203.2 195.7 5.390 4.492 1.625 
m2 [tons] 100 98.29 100 100 2.398 0.030 0.035 
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Fig. 3-1. Comparison of stiffness and damping estimate error levels 
for higher VSDD induced stiffness/damping for 2DOF bridge model
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The damping estimates are also improved considerably, though the variation of the relative 
error tends to have a linear trend with a maximum error of 5% of the damping coefficients of the 
system as shown in Fig. 3-1g,h. Table 3-1 shows the mean and percent root mean square error 
(RMSE) of the estimates for configurations (ii) and (iv) — i.e., with the highest levels of 
effective stiffness and effective damping, respectively. 

One initial reaction to this approach is that the stiffness/damping levels sound quite 
unreasonable. However, it must be understood that these are effective levels of stiffness and 
damping forces exerted during low-level ambient excitation.  Thus, the actual forces are well 
within the capabilities of current VSDDs and quite small compared to the structure load capacity. 

To verify that the force levels are reasonable, the response of the structure to a low-level 
earthquake excitation (Kanai-Tajimi filtered white noise with a 0.002g root mean square (RMS) 
ground acceleration) is computed. With the VSDD producing 20 times the bearing stiffness, the 
RMS pier and deck drifts are 1.5 mm and 0.125 mm, respectively; RMS absolute pier and deck 
accelerations are 0.0037g and 0.0041g, respectively; and RMS VSDD force is 19.2 kN. This 
force level is quite small relative to the masses (500 ton deck, 100 ton pier). Meanwhile, with the 
VSDD producing 400 times the bearing damping, the RMS pier and deck drifts are 1.44 mm and 
0.074 mm, respectively; RMS absolute accelerations are 0.003g at both deck and pier; and the 
RMS VSDD force is about 15 kN, which is also small compared to the masses. In contrast, when 
no VSDDs are used, the RMS pier and deck drifts are 0.85 mm and 1.61 mm, respectively; RMS 
absolute pier and deck accelerations are 0.0032g and 0.0025g, respectively. Thus, the VSDD 
forces used here are quite modest and induce little change in the magnitude of structural 
response. 

3.3 2DOF Shear Building Model with Larger VSDD Forces 
The identification results for the 2DOF shear building also showed considerable 

improvement by increasing the additional stiffness level induced by the VSDDs. The 
identification results introduced here add VSDD stiffness that is {0,5,10,15,20} times the 
stiffness of the corresponding story or VSDD damping that is {0,100,200,300,400} times the 
damping of the corresponding story. The improvements are well demonstrated in Table 3-2. 

By using higher levels of induced VSDD stiffness/damping, faster convergence in the 
identification code is observed. Using the true parameter vector as an initial starting guess for the 
iterative procedure, the algorithm converges, generally in 3−5 iterations, to estimates that are 
fairly accurate. 

The results in Table 3-2 for a single VSDD in the first story show that the identification of 
the stiffness in the first story is quite accurate using both conventional and VSDD approaches. 
On the other hand, the means of all other identified structural parameters are better when using 
the VSDD approach. The results in Table 3-2 indicate that the root mean square errors are 
reduced by more than two times for the second story stiffness, and by nearly ten times for the 
second story damping coefficient by varying VSDD stiffness with these higher force levels. 
For the case of an initial parameter vector that is 20% higher (in all components) than the exact 
values, 100 separate estimates were computed. Fig. 3-2, showing the variation of the identified 
stiffnesses using higher levels of induced VSDD stiffness, indicates that the VSDD approach did 
very well compared to the conventional structure approach that shows large bias and variation. 
Similar results are observed in the identified damping coefficients of the first and second stories, 
as shown in Fig. 3-3. Both Fig. 3-2 and Fig. 3-3 show approximate one-, two- and three-sigma 
(standard deviation) curves for the two approaches. 
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Table 3-2. Estimate Means and Root Mean Square Error for 2DOF Shear Building Model 

VSDD 
Loc. 

Struct. 
Param. 

Exact 
Values 

Mean RMSE (%) 
No 

VSDD 
Add 
kVSDD

Add 
cVSDD

No 
VSDD 

Add 
kVSDD

Add 
cVSDD

One 
VSDD 
in 1st

story 
(exact 

guesses) 

k1 1.0000 0.9999 0.9993 0.9980 0.078 0.288 0.428 
k2 1.0000 0.9955 0.9985 0.9966 0.994 0.443 0.710 
c1 0.0500 0.0519 0.0495 0.0495 8.646 4.160 5.553 
c2 0.0500 0.0449 0.0497 0.0496 14.303 1.422 2.799 
m2 1.0000 0.9982 0.9987 0.9967 0.417 0.413 0.716 

One 
VSDD 
in 1st

story 
(offset 

guesses)  

k1 1.0000 1.0368 0.9993 * 4.174 0.289 * 
k2 1.0000 0.9953 0.9985 * 1.021 0.445 * 
c1 0.0500 0.0520 0.0495 * 9.759 4.167 * 
c2 0.0500 0.0482 0.0497 * 12.403 1.424 * 
m2 1.0000 1.0343 0.9987 * 3.958 0.416 * 

One 
VSDD 
in 2nd 
story 

(Exact 
guesses)  

k1 1.0000 0.9999 1.0022 1.0004 0.078 0.272 0.099 
k2 1.0000 0.9955 0.9835 0.9989 0.994 1.877 0.581 
c1 0.0500 0.0519 0.0501 0.0500 8.646 2.758 2.429 
c2 0.0500 0.0449 0.0465 0.0467 14.303 9.952 9.946 
m2 1.0000 0.9982 0.9949 0.9990 0.417 0.587 0.195 

VSDDs 
in 1st 

and 2nd 
stories 
(Exact 

guesses) 

k1 1.0000 0.9999 1.0001 1.0002 0.078 0.125 0.093 
k2 1.0000 0.9955 0.9996 0.9989 0.994 0.092 0.234 
c1 0.0500 0.0519 0.0500 0.0499 8.646 1.934 2.296 
c2 0.0500 0.0449 0.0498 0.0495 14.303 2.303 2.889 
m2 1.0000 0.9982 0.9999 0.9993 0.417 0.027 0.173 

* Note: some VSDD damping entries were never studied with offset guesses.

For a VSDD in the second story, the results resemble those with a VSDD in the first story 
only, yet the improvement is more reflected when varying VSDD damping only. Moreover, the 
variation of the stiffness estimate of the 1st story is reduced compared to a VSDD in the first 
story only (Table 3-2). 

With VSDDs in both stories of the structure, Fig. 3-4 and Fig. 3-5 show that the variation of 
the stiffness identification of the second story is clearly decreased and improved. The mean of 
the first story stiffness estimate is quite similar to that of the conventional approach case, as 
shown in Table 3-2. However, some improvement in the variation of the stiffness of the first 
story, compared to the case of a VSDD in the first and second stories only, can be observed. 
Generally, the variations are improved compared to any of the previous cases of a single VSDD 
in the structure such that it is now one tenth that of the conventional approach case for the second 
story stiffness and nearly one fifth for the damping coefficients in both stories, though the 
variance of the identified stiffness coefficient in the first story rises slightly compared to the 
conventional structure approach. 
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Fig. 3-2. Stiffness estimate error levels for the iterative method with offset 
start for 2DOF model with VSDD in 1st story only (varying stiffness case)

Fig. 3-3. Damping estimate error levels for the iterative method with offset 
start for 2DOF model with VSDD in 1st story only (varying stiffness case)
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Fig. 3-4. Stiffness error levels for the iterative method with exact start for 
2DOF model with VSDD in both 1st and 2nd stories   (varying stiffness case)

Fig. 3-5. Stiffness error levels for the iterative method with exact start for 
2DOF model with VSDD in both 1st and 2nd stories   (varying damping case)
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3.4 6DOF Shear Building Model 
The 6DOF model system identification in this section is solved for the variable stiffness 

VSDD and the conventional structure (no VSDDs) approaches, using the iterative least squares 
(ILSN) method with exact starting guesses of the unknown parameters. The VSDDs are located 
in the first three stories only. The masses are assumed known a priori. In simulation, each 
installed VSDD is assumed to provide additional stiffness at four discrete levels: {0,5,10,15} 
times the corresponding story stiffness.  

Table 3-3 shows the improvement in the estimates of the stiffness and damping coefficients 
when using VSDDs in the structural model. Also, it is quite evident that the variations are 
dramatically reduced — up to 12 times for stiffness estimate in the 6th story and up to nearly 23 
times in the damping estimates. The results here confirm the improvements observed previously 
for the lower-order 2DOF shear building model and the 2DOF bridge model. 

Table 3-3. Estimate Means and Mean-Square Error Percentage 
for 6DOF Shear Building Model (Varying Stiffness) 

VSDD 
Loc. 

Structural 
Parameters 

Exact 
Values 

Mean RMSE(%) 
No 

VSDD 
Varying 

k 
No 

VSDD 
Varying 

k  

Three 
VSDDs 
in 1st, 

2nd, and 
3rd 

stories 

k1 1.0000 1.0003 1.0000 0.183 0.036 
k2 1.0000 0.9996 1.0000 0.105 0.071 
k3 1.0000 1.0001 0.9999 0.163 0.083 
k4 1.0000 1.0002 1.0000 0.220 0.020 
k5 1.0000 0.9999 1.0000 0.172 0.026 
k6 1.0000 0.9995 1.0000 0.144 0.011 
c1 0.0500 0.0511 0.0500 5.399 0.783 
c2 0.0500 0.0491 0.0501 3.877 1.444 
c3 0.0500 0.0496 0.0496 4.698 2.028 
c4 0.0500 0.0502 0.0500 7.321 0.296 
c5 0.0500 0.0492 0.0500 3.748 0.267 
c6 0.0500 0.0496 0.0500 4.587 0.202 

3.5 Summary 
This chapter demonstrated that using VSDDs with effective stiffness or damping larger than 

that of the structure can significantly decrease the error in structural parameter estimates. Since 
this approach would be used with small ambient excitation, the VSDD forces are quite moderate. 
Thus, this VSDD approach is a viable improvement for structural parameter identification 
compared to the conventional structure approach. 
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4 VSDD APPROACH USING THE INVFREQS-LEAST 
SQUARES METHOD 

4.1 Introduction 
The INVFREQS-Least Squares (INVFLS) method is a frequency domain identification 

method, based on a polynomial form of the transfer function and a least squares error approach. 
The method is composed of two stages. The first stage, called the INVFREQS stage, estimates 
the coefficients of polynomials of the transfer functions of structural systems. The second, also 
by least squares, estimates the structural parameters, such as stiffness and damping coefficients, 
from direct relations with the coefficients of the transfer function polynomials. The INVFREQS 
stage for single-input single-output (SISO) systems already exists as the MATLAB® function 
invfreqs. In this study, the first stage is extended to single-input multi-output (SIMO) and 
multi-input multi-output (MIMO) systems. To explain the method, the application to SISO 
systems is explained thoroughly and, then, the extension to SIMO and MIMO systems is 
introduced. The second stage, using a least squares technique to find the structure parameters, is 
then discussed. A numerical example with the 2DOF shear building model is used to 
demonstrate that the VSDD approach provides stiffness estimates superior to those from the 
conventional passive structure. 
4.1.1 INVFREQS Method for SISO System 

To explain the general derivation of this method, a SISO system is a good start. Generally, 
the transfer function H ( jω)  for a SISO system can be represented as a fraction with a numerator 
polynomial of order nB divided by a denominator polynomial of order nA. Let θ  be a vector of the 
coefficients of these polynomials 

 θ = [ anA−1 anA−2 … a0  bnB bnB−1 … b0 ]T  (4-1) 

The polynomials and the transfer function can, then, be written explicitly as a function of the 
parameters 

 
A( jω,θ) =     (jω)nA + anA−1(jω)nA−1 +…+ a0

B( jω,θ) = bnB (jω)nB + bnA−1(jω)nB−1 +…+ b0

H (jω,θ) = B(jω,θ) / A(jω,θ)

 (4-2) 

By measuring the output response for known input excitation, an experimental transfer 
function Ĥ ( jω)  may be obtained. The residual error between the theoretical and experimental 
transfer functions can, consequently, be defined as: 

 e(jω,θ) = B(jω,θ)− A(jω,θ)Ĥ (jω)
A(jω,θ)

 (4-3) 

Minimizing this error directly at all frequencies can be numerically difficult; however, a first 
estimate of the parameters that minimize the error can be found by minimizing the error in the 
numerator of Eq. (4-3) 

 e(jω,θ) = [bnB (jω)nB +…+ b0 ]− Ĥ (jω)[(jω)nA + anA−1(jω)nA−1 +…+ a0 ]  (4-4) 
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Then, rearranging the components of Eq. (4-4) as 

 
( jω)nA−1anA−1Ĥ (jω)+ ( jω)nA−2anA−2Ĥ (jω)+…+ a0Ĥ (jω)

− ( jω)nB bnB − ( jω)nB−1bnB−1 −…− b0 = −( jω)nA Ĥ ( jω)− e( jω,θ)
 (4-5) 

which, when evaluated at nω  distinct frequencies, can be expressed in matrix form 

 Dθ = v− e   (4-6) 

where D is the nω × (nB + nA +1)  matrix 

 

D =

(jω1)nA−1Ĥ (jω1)  Ĥ ( jω1)   −( jω1)nB −( jω1)nB−1  −1

      

(jωnω )nA−1Ĥ (jωnω )  Ĥ ( jωnω )   −( jωnω )nB −( jωnω )nB−1  −1

"

#

$
$
$
$

%

&

'
'
'
'

 (4-7) 

and v and e  are the nω ×1  vector 

  
v = −( jω1)nA Ĥ ( jω1)  −( jωnω )nA Ĥ ( jωnω )

"
#$

%
&'

T

e = e( jω1,θ)  e( jωnω ,θ)"
#

%
&
T

 (4-8) 

Minimizing the squared error vector e 2 = e∗e , with respect to the vector of unknown coefficients 
θ , gives 

 
∂e∗e
∂θ

=
∂
∂θ
((Dθ− v)*(Dθ− v)) = ∂

∂θ
(θTD*Dθ−θTD*v− v*Dθ+ v*v)

= 2(D*Dθ−D*v)T = 0T
 (4-9) 

where (⋅)∗  denotes complex conjugate transpose. For the system to be causal, all coefficients 
should be real. Thus, the vector of unknown coefficients θ  can be obtained with 

 θ = [D*D]−1Re[D*v]  (4-10) 

The Re(⋅)  should not be necessary theoretically but it eliminates, in numerical computation, 
small imaginary components resulting from floating-point round off.  Thus, Eq. (4-10) gives 
initial estimates of the transfer function coefficients. The stability of the estimated system is 
checked by calculating the roots of the estimated denominator polynomial, Â( jω) , and verifying 
the roots have negative real parts. 

An iterative technique is then used to refine the estimates by reducing the residual transfer 
function error, in terms of the estimated polynomials B̂( jω)and Â( jω) , 

 ê( jω) = B̂( jω) Â( jω)− Ĥ ( jω)  (4-11) 

The estimated coefficients of the numerator and denominator polynomials are not yet the best 
estimates. Therefore, each of the coefficients of B̂( jω) and Â( jω)  has error Δb  and Δa , 
respectively. In other words, the estimated polynomials equal the exact polynomials plus some 
error such that: 
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 B̂( jω) = (bnB +∆bnB )( jω)nB + (bnB−1 +∆bnB−1)( jω)nB−1 +…+ (b0 +∆b0 )  (4-12) 

 Â( jω) = ( jω)nA + (anA−1 +∆anA−1)( jω)nA−1 +…+ (a0 +∆a0 )  (4-13) 

Substituting Eqs. (4-12) and (4-13) into Eq. (4-11) and simplifying, results in 

 
ê( jω)Â( jω) = (bnB +∆bnB )( jω)nB +…+ (b0 +∆b0 ) 

−Ĥ ( jω) (anA−1 +∆anA−1)( jω)nA−1 +…+ (a0 +∆a0 ) 
 (4-14) 

The right hand side of Eq. (4-14) can be divided into two parts: one includes the 
coefficients of the actual polynomials and the other formed of the error coefficients 

 
ê( jω)Â( jω) = B( jω)− Ĥ ( jω)A( jω)+[∆bnB ( jω)nB +…+∆b0 ]

−Ĥ ( jω)[∆anA−1( jω)nA−1 +…+∆a0 ]
 (4-15) 

For the exact actual B( jω)  and A( jω) , the first two terms in the right hand side of Eq. (4-15) 
cancel and, thus, the resulting equation of the error is 

 
ê( jω) = 1

Â( jω) ∆bnB ( jω)nB +…+∆b0 − Ĥ ( jω) ∆anA−1( jω)nA−1 +…+∆a0 { }  (4-16) 

The new residual error Eq. (4-16) is used for the evaluation of the error coefficients. This is done 
by rewriting Eq. (4-16) in a matrix form such that 

 ∆Dnω×(nB+nA+1)∆θθ(nB+nA+1)×1 = ênω×1  (4-17) 

where the error coefficients vector ∆θθ  is 

 ∆θθ = ∆anA−1 ∆anA−2 … ∆a0 ∆bnB ∆bnB−1 … ∆b0




T

 (4-18) 

and the matrix ∆D  is defined as 

    

∆D =

−
( jω1)nA−1Ĥ ( jω1)

Â( jω1)
−
Ĥ ( jω1)
Â( jω1)

( jω1)nB
Â( jω1)

( jω1)nB−1
Â( jω1)

1
Â( jω1)

−
( jωi )nA−1Ĥ ( jωi )

Â( jωi )
−
Ĥ ( jωi )
Â( jωi )

( jωi )nB
Â( jωi )

( jωi )nB−1
Â( jωi )

1
Â( jωi )

−
( jωnω )nA−1Ĥ ( jωnω )

Â( jωnω )
−
Ĥ ( jωnω )
Â( jωnω )

( jωnω )nB
Â( jωnω )

( jωnω )nB−1
Â( jωnω )

1
Â( jωnω )

































  (4-19) 

Premultiplying both sides of Eq. (4-17) by the complex conjugate transpose ∆D* , taking 
the real parts and solving for the error coefficients vector ∆θθ , 

 ∆θθ = [∆D*∆D]−1Re[∆D*ê]  (4-20) 
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The calculation of error coefficients helps in finding a general direction to better estimate the 
transfer function coefficients. The new resulting coefficients vector θθmod  is equal to the sum of 
the initial estimates vector θθ  and the error coefficients vector ∆θθ . For enhancement however, a 
check is performed on the evaluated error coefficients ∆θθ  before adding them to the initial 
estimates θθ . In the check, the new modified coefficients will be represented as 

 θθmod = θ+ k(∆θθ)  (4-21) 

where k is to be determined as follows.  First, calculate the squared residual error ê∗ê  from the 
first step in Eq. (4-11) for all frequencies 

 ê∗ê = B̂( jωi )
Â( jωi )

− Ĥ ( jωi )










∗ B̂( jωi )
Â( jωi )

− Ĥ ( jωi )








  (4-22) 

The result is then compared to the modified squared residual error êmod∗ êmod   

 êmod∗ êmod = B̂mod ( jωi )
Âmod ( jωi )

− Ĥ ( jωi )










∗ B̂mod ( jωi )
Âmod ( jωi )

− Ĥ ( jωi )








  (4-23) 

where Âmod ( jωi ) and B̂mod ( jωi )  are computed using θθmod  and k = 1. If ê∗ê  is smaller than 
êmod∗ êmod , then θθmod  is recalculated from Eq. (4-21) by taking k equivalent to half of its previous 
value. The comparison is repeated between ê∗ê  and êmod∗ êmod  until the latter is smaller. After the 
check is fulfilled, another loop of recalculating the error coefficients vector ∆θθ  is applied. In the 
new loop, the old vector θθmod  is considered like the initial estimate in Eq. (4-11). These loops of 
evaluation of ∆θθ  and modification of the estimated coefficients are repeated until the norm of 
the error coefficients vector becomes smaller than a tolerance factor 

 ∆θθ ≤ tol  (4-24) 

This tolerance factor is dependent on the sensitivity that the user requires. 
4.1.2 INVFREQS Method for SIMO and MIMO Systems 

For the case of SIMO and MIMO systems, a series of transfer functions is identified rather 
than the single one in the SISO case. Each transfer function represents the ratio between one of 
the inputs and one of the outputs. The global transfer function matrix is formed such that each 
column corresponds to one of the inputs, and each row to one of the outputs. 

Consider a system that is subjected to M excitation inputs and has L measured outputs. 
Then, the transfer function from the mth input to the lth output of the system is expressed as 
 Hl,m (jω) = Bl,m (jω) / Am (jω)  (4-25) 

where the denominator polynomial Am ( jω)  of the transfer functions of all measured outputs is 
considered unique for a single input, and the numerator polynomial Bl,m ( jω)  is considered 
unique for each input/output combination. Accordingly, the residual error between the 
polynomial transfer function and the corresponding experimental transfer function Ĥl,m (jω)  is 
defined as 

 el,m (jω) = Bl,m (jω)− Am (jω)Ĥl,m (jω)
Am (jω)

 (4-26) 
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where 

 Bl,m ( jω) = bnB (l,m)(l,m) ( jω)nB (l,m) + bnB (l,m)−1(l,m) ( jω)nB (l,m)−1 +…+ b0(l,m)  (4-27) 

 Am ( jω) = ( jω)nA (m) + anA (m)−1(m) ( jω)nA (m)−1 +…+ a0(m)  (4-28) 

Simplifying the residual error Eq. (4-26) gives an equation for each input/output transfer 
function, similar to Eq. (4-3) in SISO systems case where nA (m)  and nB (l,m)  are the orders of 
polynomials Am ( jω)  and Bl,m ( jω) , respectively. However, in contrast with SISO systems, the 
residual error in the SIMO/MIMO case is defined as a vector error for transfer functions from a 
single input to all related outputs  

 err(m)( jω) =
[bnB (1,m)(1,m) ( jω)nB (1,m) +…+ b0(1,m) ]−[( jω)nA (m) +…+ a0(m) ]Ĥ1,m ( jω)

[bnB (L,m)(L,m) ( jω)nB (L,m) +…+ b0(L,m) ]−[( jω)nA (m) +…+ a0(m) ]ĤL,m ( jω)



















 (4-29) 

Eq. (4-29) can be set in a matrix form as 

 DLnω×( nB (
l
∑ m,l )+nA (m)+L )

(m) x( nB (
l
∑ m,l )+nA (m)+L )×1
(m) =VLnω×1(m) − errLnω×1(m)  (4-30) 

where the vector V for the mth input is defined as 

 VLnω×1(m) =

( jω1)nA (m) Ĥ1,m ( jω1)

( jωnω )nA (m) Ĥ1,m ( jωnω )

( jω1)nA (m) ĤL,m ( jω1)

( jωnω )nA (m) ĤL,m ( jωnω )































T

 (4-31) 

and D is a matrix that is defined for mth input as 

 D(m) =

D1(m) D1(m) 0 0
D2
(m) 0 D2

(m)

0
DL
(m) 0 0 DL

(m)





















 (4-32) 

where submatrices Dl
(m)  are given by 
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  Dl
(m) =

( jω1)nA (m)−1Ĥl,m ( jω1) ( jω1)nA (m)−2 Ĥl,m ( jω1) Ĥl,m ( jω1)
( jω2 )nA (m)−1Ĥl,m ( jω2 ) ( jω2 )nA (m)−2 Ĥl,m ( jω2 ) Ĥl,m ( jω2 )

( jωnω )nA (m)−1Ĥl,m ( jωnω ) ( jωnω )nA (m)−2 Ĥl,m ( jωnω ) Ĥl,m ( jωnω )





















  (4-33) 

and block matrices Dl
(m)  that sit along a diagonal in D(m)  are 

 Dl
(m) =

−( jω1)nB (l,m) −( jω1)nB (l,m) −1
−( jω2 )nB (l,m) −( jω2 )nB (l,m) −1

−( jωnω )nB (l,m) −( jωnω )nB (l,m) −1





















 (4-34) 

and θθ(m) , the vector of the coefficients of the numerator and denominator polynomials of all 
transfer functions from the mth input to all L outputs is 

 θθ(m) = anA−1(m) a0(m) bnB (1,m)(1,m) b0(1,m) bnB (L,m)(L,m) b0(L,m)





T

 (4-35) 

Similarly to SISO systems, the vector of unknown coefficients θθ(m) is evaluated from 

 θθ(m) = [D(m)*D(m) ]−1Re[D(m)*V(m) ] (4-36) 

The procedure described by Eq. (4-29) to Eq. (4-36) computes the initial approximate 
estimation part of the INVFREQS method for SIMO systems case. For MIMO systems, the same 
procedure is executed M times to obtain the transfer functions with respect to each input. The 
stability of the estimated system is checked by calculating the roots of the estimated denominator 
polynomial for each input m, Am ( jω) , and verifying that the real parts of the roots are negative. 

The iterative part of INVFREQS method for SIMO and MIMO systems considers the 
estimated vector θθ  as an initial estimate. Similarly to SISO case, the estimated coefficients of 
the transfer function polynomials are assumed biased by an error where,  

 B̂lm ( jω) = [bnB (l,m)(l,m) +∆bnB (l,m)(l,m) ]( jω)nB (l,m) +…+[b0(l,m) +∆b0(l,m) ]  (4-37) 

  Âm ( jω) = ( jω)nA (m) +[anA (m)−1(m) +∆anA (m)−1(m) ]( jω)nA (m)−1 +…+[a0(m) +∆a0(m) ]  (4-38) 

where 

 âi(m) = ai(m) +∆ai(m)     and    b̂i(l,m) = bi(l,m) +∆bi(l,m)  (4-39) 

By substituting the estimated polynomial coefficients, the vector error as defined in Eq. (4-29) is 
evaluated, 

 er̂r(m)( jω) =
(b̂nB (1,m)(1,m) ( jω)nB (1,m) +…+ b̂0(1,m) )− Ĥ1,m ( jω)(( jω)nA (m) +…+ â0(m) )

(b̂nB (L,m)(L,m) ( jω)nB (L,m) +…+ b̂0(L,m) )− ĤL,m ( jω)(( jω)nA (m) +…+ â0(m) )]


















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  (4-40) 

whereas by substituting Eqs. (4-37) and (4-38) into Eq. (4-29) gives a matrix form of the 
resulting equation similar to that in the SISO case 

 ∆DLnω×( nB (
l
∑ m,l )+nA (m)+L )

(m) ∆θθ( nB (
l
∑ m,l )+nA (m)+L )×1
(m) = er̂rLnω×1)(l,m)  (4-41) 

The ∆D  matrix for mth input is 

 ∆D(m) =

∆D1(m) ∆D1(m) 0 0
∆D2

(m) 0 ∆D2
(m)

0
∆DL

(m) 0 0 ∆DL
(m)





















 (4-42) 

where submatrices ∆Dl
(m)  are given by 

 ∆Dl
(m) =

( jω1)nA (m)−1Ĥl,m ( jω1)
Â( jω1)

( jω1)nA (m)−2 Ĥl,m ( jω1)
Â( jω1)

Ĥl,m ( jω1)
Â( jω1)

( jω2 )nA (m)−1Ĥl,m ( jω2 )
Â( jω2 )

( jω2 )nA (m)−2 Ĥl,m ( jω2 )
Â( jω2 )

Ĥl,m ( jω2 )
Â( jω2 )

( jωnω )nA (m)−1Ĥl,m ( jωnω )
Â( jωnω )

( jωnω )nA (m)−2 Ĥl,m ( jωnω )
Â( jωnω )

Ĥl,m ( jωnω )
Â( jωnω )































 

  (4-43) 

and block matrices ∆Dl
(m)  that sit along a diagonal in ∆D(m)  are 

 ∆Dl
(m) =

−( jω1)nB (l,m)
Â( jω1)

−( jω1)nB (l,m)
Â( jω1)

−1
Â( jω1)

−( jω2 )nB (l,m)
Â( jω2 )

−( jω2 )nB (l,m)
Â( jω2 )

−1
Â( jω2 )

−( jωnω )nB (l,m)
Â( jωnω )

−( jωnω )nB (l,m)
Â( jωnω )

−1
Â( jωnω )































 (4-44) 

In case of SIMO systems, the vector of the error coefficients is defined as, 

   ∆θθ(m) = ∆anA (m)−1(m) … ∆a0(m) ∆bnB (1,m)(1,m) … ∆b0(1,m) … ∆bnB (L,m)(L,m) … ∆b0(L,m)





T

 (4-45)  

Then the error coefficients vector ∆θθ(m)  is evaluated through the following equation, 

 ∆θθ(m) = [∆D(m)∗∆D(m) ]−1Re[∆D(m)∗er̂r(m) ]  (4-46) 
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For MIMO systems, the same procedure is repeated M times to obtain the error coefficients 
of transfer functions with respect to each input. A similar convergence check to that explained 
for SISO systems is applied. These loops evaluating Δθ  and updating the estimated coefficients 
are repeated until the norm of the error coefficients vector becomes smaller than a tolerance 
factor as in Eq. (4-24). 
4.1.3 Least Squares Estimation of Structural Parameters 

The next task, then, is to use estimates of the polynomial coefficients of the transfer 
functions to obtain estimates of structural parameters such as stiffness and damping coefficients. 
This, however, requires knowledge of the direct relations between the transfer function 
coefficients and the structural parameters. To develop such relations, a method is used that is 
based on the conventional definition of the transfer function in the frequency domain.  

By considering a state-space representation of a structural system  

 q = Aq+ Bƒ ,       y =Cq+Dƒ+ v  (4-47) 

where q = [ xT xT ]T  is the state vector, A is the system state matrix, which is dependent on 
the mass M, damping Cd, and stiffness K matrices of the structural system 

 A =
0nDOF×nDOF InDOF×nDOF

−M−1K( )nDOF×nDOF −M−1Cd( )nDOF×nDOF

#

$

%
%

&

'

(
(

 (4-48) 

and nDOF is the number of degrees of freedom of the system. The B  matrix is the input 
influence matrix, C is the output influence matrix for the state vector q, and D is the direct 
transmission matrix. In both equations, f is a scalar excitation force, and y is a m×1  vector of 
measured responses corrupted by m×1  sensor noise vector v.  

Thus, the system can be represented by the m×1  transfer function (TF) matrix H(jω), 
expressed as the ratio of numerator and denominator polynomials as  

 H( jω) = B( jω) / A( jω)  (4-49) 

However, another definition of the TF that depends on the system state matrix A  is, 

 H( jω) =C[( jω)I(2×nDOF)×(2×nDOF) − A]−1 B+D  (4-50) 

Equating the right hand sides of Eqs. (4-49) and (4-50) gives 

 B( jω) / A( jω) =C[( jω)I(2×nDOF)×(2×nDOF) − A]−1 B+D  (4-51) 

Knowing the structure of the system state matrix, the dependence of C, the output influence 
matrix, on M, Cd, and K matrices, and the dependence of the B  and D on the type of the 
excitation force f, one can obtain a parametric representation of the coefficients of the numerator 
and denominator polynomials in terms of M, Cd, and K matrices components which will be 
denoted θ(M,Cd,K) .  

Finally, the difference between the parametric forms of the coefficients of the polynomials, 
B( jω)  and A( jω) , from Eq. (4-51) and the estimates of these coefficients obtained from the 
INVFREQS stage θfinal , is defined as an error vector  

 error = θfinal −θ(M,C,K)  (4-52) 
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Minimizing the sum of the square errors in Eq. (4-52) for all coefficients will result in an 
estimate to the unknown parameter vector that includes the stiffness and damping coefficients. 
4.1.4 Some Applications and Results for INVFLS Method 

The two degree-of-freedom (2DOF) shear building structure model in Chapter 2 is studied 
using the INVFLS method. The structure is subjected to ambient excitation from the ground. 
Absolute acceleration measurements at the ground, xg , and at the two floors, (x1 + xg )  and 
(x2 + xg ) , are used to generate a 2×1  experimental transfer function at nω  distinct frequency 
values. The theoretical transfer function matrix is the same as in Chapter 2  where θ  is the vector 
of unknown structural parameters and κ  is the vector of known parameters based on the VSDDs 
actions. 

The experimental transfer functions are generated in MATLAB® as discussed in METRANS 
report 01-10 (Johnson and Elmasry, 2003). The sensor noise used in generating the five 
experimental VSDD transfer functions is the same as those used for the conventional structure 
approach for both the INVFLS and ILSN applications. The VSDD is installed in the lateral 
bracing of the structure. For comparison with the results from ILSN method, similar VSDD 
locations in the structure are studied: a VSDD in the first story of the structure, then only in the 
second story and, finally, in both stories. As in the previous sections, the results are compared to 
the conventional structure approach. It is assumed that, of all structural parameters, only the 
mass of the 1st story m1 is known. 

In the numerical model considered here, the floor masses and story stiffnesses are taken to 
be unity. The story damping coefficients are set to 0.05. The single VSDD is assumed to provide 
additional stiffness in the story at which it is located with five discrete stiffness levels, 
corresponding to an additional 0%, 10%, 20%, 30% and 40% stiffness; i.e., κ1 = 0.0, κ2 = 0.1, …, 
κ5 = 0.4 where, in this case, κ =κ = kVSDD /m1 . For this study, the number of evenly spaced 
frequency points, nω , is 251 when comparing results of VSDD approach and the conventional 
structure approach, and is 2001 when comparing the INVFLS and ILSN methods. (The ILSN 
study in the previous sections used only 51 frequency points; such a larger number of frequency 
points is used here since INVFREQS is non-parametric so it can handle the computation for a 
large number of frequencies in much shorter time than ILSN method.) In addition, picking a 
larger number of frequency points is done since the least squares solution in the ILSN method 
depends on more information than the least squares stage in case of INVFLS method. It is also 
assumed that the same noise level exists for the simulated experimental transfer functions.  

The comparisons reported here are the differences between: 
• The VSDD approach, using five experimental transfer function matrices, one per VSDD 

stiffness level, and 
• The conventional structure approach with κ = 0.0 where the conventional approach uses a 

square error based on five separate experimental transfer functions.  
4.1.5 Analysis of Results 

The INVFLS method is found to be successful in estimating stiffness coefficients. 
However, the estimation of the damping coefficients exhibits large deviations from the exact 
values. The results are shown in Fig. 4-1 for a VSDD in the first story, in Fig. 4-2 for a VSDD in 
the second story, and in Fig. 4-3 for VSDDs in both stories. Based on 100 noisy patterns of the 
simulated transfer function, the results indicate that, for the VSDD approach, the relative error in 
the estimates of stiffness coefficients has a maximum standard deviation of 3% for the first story 
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and 1% for the second story. Meanwhile, the relative error in the estimates of the damping 
coefficients has a maximum standard deviation of 35% for the 1st story and 20% for the 2nd story. 

Comparing the VSDD and conventional structure approaches, it is observed from Fig. 4-1, 
for one VSDD in the 1st story, that the stiffness coefficient estimate of the 1st story is improved 
by using VSDDs whereas better estimation of the 2nd floor stiffness coefficient is achieved using 
the conventional structure approach. The trend of the variation of the damping coefficients 
estimates, however, shows no clear difference between the two approaches.

For a VSDD in the 2nd story only, the stiffness estimates for both stories have smaller 
variations using VSDD approach. Also, the damping coefficients estimates for both stories, 
though still with large variations, show some modest improvement with the VSDD approach.

Fig. 4-1. Stiffness and damping estimate error levels for INVFLS method for 2DOF model with 
VSDD in 1st story only

Fig. 4-2. Stiffness and damping estimate error levels for INVFLS method for 2DOF model with 
VSDD in 2nd story only

Using VSDDs in both stories, the variation of the stiffness coefficient estimate in the 2nd

story is smaller than any other VSDD or conventional structure case. However, while the 
variation of the estimate of the stiffness coefficient of the 1st story is smaller than that of the 
conventional structure approach, locating a single VSDD in the 1st story or 2nd story only gives 
slightly smaller variation for the relative error of estimation as shown in Fig. 4-1 and Fig. 4-2. 
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The variation of the relative error of the damping estimates shows the same trend as using a 
VSDD in the 2nd story only. 

By increasing the number of frequencies, 

!

n" , the results for stiffness and damping 
coefficients identification are improved. This is clear by comparing the results of INVFLS 
method in Fig. 4-1 to Fig. 4-3 to those in Fig. 4-4.

Fig. 4-3. Stiffness and damping estimate error levels for INVFLS method for 2DOF model with 
VSDDs in both stories

Comparing the results from the INVFLS method to those of ILSN method, shown in Fig. 
4-4, one can observe that the ILSN method gives better estimates for the stiffness coefficients in 
the first story whereas INVFLS method gives better estimates for the stiffness coefficients of the 
second story. This is the case for all three VSDDs configurations in the 2DOF shear building 
structure. 

However, the estimates of the damping coefficients are found to have less variation using 
the ILSN method for solving the identification problem. Nevertheless, Fig. 4-4 shows that the 
mean estimates for either stiffness or damping coefficients are always better using the INVFLS 
method. This may be attributed to the large number of frequency points used in the optimization 
problem in the INVFLS method. The INVFLS method also proved to consume much less 
computational time and converged faster to the results. This may be attributed to the fact that the 
INVFREQS stage of the INVFLS method uses a non-parametric numerical technique that is 
easily handled numerically, in contrast with the parametric problems in the ILSN method. 
Moreover, the application of the ILSN method requires some a priori initial guesses of the 
parameters to be estimated, whereas the INVFLS method has no such requirement and is able to 
estimate the stiffness parameters successfully with relatively small errors.

When it comes to choosing which method is applied on-site, the control designer should 
study the priorities whether absolute accuracy is more important than computation time or vice 
versa. Also, the designer should consider that using the ILSN method may require some prior 
guesses of the estimated parameters, which may require some experience. A good suggestion is 
to use the results of INVFLS method as an initial guess for the ILSN method.
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Fig. 4-4. Comparison of stiffness and damping estimate error levels between INVFLS and ILSN 
methods for 2DOF shear building model
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5 VSDDs APPROACH IN THE CONTEXT OF SUBSPACE 
IDENTIFICATION 

5.1 Introduction 
The identification of modal parameters for structures from experimental data is sometimes 

carried out using methods that operate in the time domain. Typically, a curve is fit to free decay 
response data. This is based on a difference equation or state space mathematical model for the 
structure. In addition, the state space model has received considerable attention for system 
analyses and design in control and systems research during the last three decades. The basic 
development in state space realization is attributed to Ho and Kalman (1965) who introduced the 
important principle of minimum realization theory, which is the process of constructing a state 
space representation (Juang and Pappa, 1985). The Eigensystem Realization Algorithm (ERA), a 
modification and an extension to the minimum realization theory, was developed by Juang and 
Pappa (1985). The ERA is a state-space realization identification technique from noisy 
measurement data. Then, based on the identified state space model, the modal parameters can be 
obtained. This method is very effective in the identification of lightly damped structures (like 
many civil structures) and can also be applied to multi-input/multi-output systems. This chapter 
studies the improvement in identifying structural parameters (stiffness) using the ERA method 
for identification when VSDDs are included and commanded to induce additional stiffness. 

5.2 Eigensystem Realization Algorithm 
The Eigensystem Realization Algorithm (ERA) is a modal testing method (Juang and 

Pappa, 1985) developed at the NASA Langley research center. This state space method makes 
use of model overspecification in the initial stage in order to reduce bias. Spurious results are 
minimized by reducing an over-specified model order by singular value truncation. Moreover, a 
judicious choice of data and its proper arrangement in the block matrix can also be used to 
minimize the computational requirements of the method. The important features of the ERA 
method (Juang and Pappa, 1985) can be summarized in the following: 

1. From the computational standpoint, simple numerical operations are needed. 
2. The computational procedure is numerically stable. 
3. The structural dynamics requirements for modal parameter identification and the control 

design requirements for a reduced state space model are satisfied. 
4. Data from more than one test can be used simultaneously to efficiently identify closely 

spaced eigenvalues. 
5. Computational requirements are moderate. 

Generally, the ERA algorithm consists of two major parts, namely, the basic formulation of 
the minimum-order realization and the modal parameter computation. The technique begins by 
forming a block data matrix, obtained by deleting some rows and some columns of the 
generalized Hankel matrix of the pulse response (Markov Parameters), but maintaining the first 
block matrix intact. Singular value decomposition is then applied on the system Hankel matrix to 
compute the singular values and unitary matrices (all of the columns are orthonormal) of a 
system, which are subsequently used to determine the order of the system and to obtain a 
realization for the state space matrices. Natural frequencies, damping ratios, and mode shapes of 
the simulated structure can be obtained from the realized system matrix.  
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 The system to be identified is assumed to be discrete-time, linear, and time invariant of the 
form: 

 x(k +1) =Ax(k)+Bu(k) ,       y(k) =Cx(k)  (5-1) 

with nu  inputs and ny  outputs. The Markov (pulse response) parameters are given by:  

 Y(0) =D ,       Y(k) =CAk−1B ,  k > 0   (5-2) 

where A is the discrete state matrix, B is the input influence matrix that characterizes the location 
and type of inputs, C is the output influence matrix for the state vector x, and D is the direct 
transmission matrix.   

For the application in this chapter, the Markov parameters are measured in the time domain 
by introducing impulses to system inputs. Then, a generalized Hankel matrix H(k) of the Markov 
parameters is formed where H(k) is in the form: 

 H(k) =

Y(k) Y(k +1)  Y(k + s)
Y(k +1) Y(k + 2)  Y(k + s+1)
   

Y(k + r) Y(k + r +1)  Y(k + r + s)
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 (5-3) 

where r and s are arbitrary integers. The variables r and s are taken as 20–30 and 10 times, 
respectively, the assumed order of the system for best results (Caicedo et al., 2004). 

The generalized Hankel matrix is then evaluated for k=0. This is followed by performing a 
singular value decomposition on the Hankel matrix H(0) 

 H(0) = PΣQT  (5-4) 

where the P and Q matrices are unitary matrices (all of the columns are orthonormal), and the 
matrix Σ  is the diagonal matrix of singular values. The order of the system will be apparent in 
the absence of noise because the first n singular values are non-zero while the rest are zeros or 
approximately zeros. When noise is present, the order may not be so clear and one must choose 
what order n to use. The smaller singular values in the diagonal of Σ  correspond to 
computational or noise (non-physical) modes. Once the estimated order of the system is chosen, 
the rows and columns associated with the computational modes are eliminated to form 
condensed versions of the singular values and unitary matrices, Σn , Pn , and Qn , respectively. 

Using these truncated matrices, estimates of the state space matrices for the discrete-time 
structural model are found by using the formulas (Juang, 1994): 

 Â = Σn
−1/2PnTH(1)QnΣn

−1/2  (5-5) 

 B̂ = Σn
1/2Qn

TEm  (5-6) 

 Ĉ = En
TPnΣn

1/2  (5-7) 

where  
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T = I 0!

"
#
$ ,       Em = I 0!

"
#
$  (5-8) 

The eigenvalues and eigenvectors of the system can then be computed from the identified 
system matrix Â  using a standard eigenvalue problem. The output matrix Ĉn  is used to 
transform the computed eigenvectors (corresponding to non-physical states in the identified 
model) to displacement at the floors of the structure using the equation 

 Φ = ĈΦ̂  (5-9) 

where Φ  is the matrix of the output shapes and Φ̂  is the matrix of the eigenvectors of the state 
space matrix Â . The ERA method was implemented using MATLAB®. 
5.2.1 Least Squares Stiffness Estimation of the Eigenvalue Problem Solution 

The structural parameters, especially the stiffness parameters, are the main interest herein. 
Thus, a technique that would evaluate such parameters from the modal parameters is required. 
The method used herein follows that of Caicedo et al. (2004), which is summarized as follows. 

By considering a lumped mass system (such as a shear building model and the 2DOF 
bridge model) with nd degrees of freedom, the mass matrix, M, and the stiffness matrix, K, are 
assumed to be of the form 

 M =

m1 0  0 0
0 m2  0 0
    
0 0  mnd−1 0
0 0  0 mnd
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 K =

k1 + k2 −k2  0 0
−k2 k2 + k3   
0   −knd−1 0
  −knd−1 knd−1 + knd −knd
0  0 −knd knd
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The eigenvalue problem of such a structure is (Chopra, 1995) 
 (K−λ jM)φj = 0     or    Kφj = λ jMφj  (5-12) 

where λ j  and φj  are the jth eigenvalue and eigenvector of the structure, respectively.  
Substituting the mass and stiffness matrices into the eigenvalue problem and reorganizing 

so that the stiffness coefficients can be assembled in a vector, results in 
 Δ jk = Λ j  (5-13) 

where 
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 Δ j =

ϕ1, j ϕ1, j −ϕ2, j 0  0
0 ϕ2, j −ϕ1, j ϕ2, j −ϕ3, j  0
    
0 0  ϕnd−1, j −ϕnd−2, j ϕnd−1, j −ϕnd , j

0 0  0 ϕnd , j −ϕnd−1, j
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and the stiffness vector k  is 

 k = [ k1 k2 … kn ]
T

 (5-15) 

and the vector Λ  is 

 Λ = [ ϕ1, jλ jm1 ϕ2, jλ jm2 … ϕnd , jλ jmnd ]T  (5-16) 

where ϕi, j  is the ith element of the eigen vector φj .  
Eq. (5-13) can be applied for each of the nd eigenvalues and eigenvector pairs identified. 

Thus, by gathering all of the equations corresponding to Eq. (5-13) into one big matrix equation 
gives 
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 (5-17) 

representing nd2  equations, which are used to solve for the vector k  of stiffnesses by the relation 

 k = Δ-1Λ  (5-18) 

It is important to note that the matrix Δ  is not square and, consequently, a pseudo-inverse of this 
matrix is computed to obtain a least squares estimate of the stiffnesses. Using multiple 
eigenvectors improves the resulting estimations. 
5.2.2 Applying VSDD approach to the ERA method 

In order to apply the VSDD approach to the ERA method, some assumptions are 
considered. The stiffnesses of VSDDs are assumed known for any desired configuration of 
VSDD stiffnesses. Once the identification process (of the structure including VSDDs) is 
complete, the added VSDD stiffness in each corresponding story is subtracted from the estimated 
stiffness parameter. Thus, the results are considered estimates of the structure’s stiffnesses at this 
configuration of the VSDDs stiffnesses. 

This can be expressed through the equation 
 kactual = kestimated − kVSDD  (5-19) 

Then, by applying the same operation for each case of the VSDD stiffness and obtaining the 
resulting corresponding stiffness estimates, a mean estimate of the stiffnesses for all different 
VSDD cases can be obtained. This can be expressed in the form of the equations 
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 ki =
1
nκ

ki,VSDDk

k=1

nκ

∑  (5-20) 

where nκ  is the number of the VSDD stiffness configuration cases. 
5.2.3 Application to the 2DOF Bridge Model 

The ERA approach with VSDDs is applied to the 2DOF bridge model discussed in 
METRANS 01-10 (Johnson and Elmasry, 2003) and in Chapter 2. The bridge stiffness and 
damping parameters are the same as in Chapter 2. The suggested technique is applied such that 
every realization of the stiffness parameters is averaged over 100 different patterns of noisy data. 
This is done 20 times to get statistics of the variation. The RMS noise level was taken as 10% of 
that of the original signal. The impulse response was generated in MATLAB® based on the exact 
parameters of the structure bridge structure. The additional stiffnesses induced by the VSDD are 
0%, 125%, 250%, 375%, and 500% of the isolator stiffness. The system is assumed of the 4th 
order in the identification process, so the ERA algorithm chooses the first four singular values to 
represent the system. The arbitrary integers r and s are taken equivalent to 50 and 20, 
respectively. In addition, the state space system matrices A, B, C, and D are 

 A =

0 0 1 0
0 0 0 1

−
(k1 + k2 )+ kVSDD
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 B = [ 0 0 1 m1 1 m2 ]T  (5-22) 

 C =
−
(k1 + k2 )+ kVSDD

m1
k2 + kVSDD
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−
(c1 + c2 )
m1

c2
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 (5-23) 

 D = [ 1 m1 1 m2 ]T  (5-24) 

5.2.4 Results of Identification Process 
Fig. 5-1 shows the relative error in the stiffness estimates. It demonstrates that using a 

VSDD was beneficial in giving more accurate means of the estimated stiffnesses. In addition, the 
root mean square error (RMSE) of the identified stiffnesses in the first and second stories, with 
the VSDD approach, are about two-thirds and half, respectively, of those obtained through the 
conventional structure approach. Thus, it can be concluded that using VSDDs also has potential 
for improving the accuracy of sub-space techniques such as ERA method in identification. 
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Table 5-1. Estimate means and mean-square error percentage for 2DOF bridge model using ERA 
method (Varying stiffness)

Exact
With VSDD No VSDD

Mean 
(kN/m)

RMSE 
(%)

Mean 
(kN/m)

RMSE 
(%)

k1 15791 15734.9 0.67 15651.65 0.99
k2 7685 7692.5 0.73 7781.995 1.42

Fig. 5-1. Variation in the stiffness parameters of the pier and deck of the 2DOF Bridge system 
model
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6 EXPERIMENTAL VERIFICATION OF THE BENEFITS OF 
VSDDs IN SHM 

6.1 Introduction 
Experimental investigations are essential to obtain a fundamental understanding of many 

phenomena. To verify the advantages gained by using VSDDs in structures for SHM, it is vital to 
identify these advantages in an experimental basis. This chapter introduces a laboratory 
experiment that replicates the effect of VSDDs on structures when used for SHM. A two degree-
of-freedom (2DOF) experimental shear building structure is subjected to a band-limited white 
noise (BLWN) ground acceleration and a filtered band-limited white noise (FBLWN) through a 
small-scale shaking table. The acceleration of the table and the absolute accelerations of the first 
and second stories are recorded. The measurements are processed to obtain an identification of 
the stiffness of the first and second stories of the 2DOF structure before and after damage.  The 
results verify the observations from the theoretical results in the previous chapters that the 
identification is improved by using VSDDs.  

6.2 Experiment Description 
In the area of control and SHM of civil structures, it is well recognized that experimental 

verification is necessary to focus research efforts in the most promising directions (Housner et 
al., 1994a,b). Consequently, a small-scale shaking table experiment is performed to validate the 
analytical results that show the improvements to SHM when using VSDDs. A schematic of the 
experiment, where a two degree-of-freedom (2DOF) shear building structure is mounted on and 
fixed to a small shaking table, is shown in Fig. 6-1. Fig. 6-1 also shows the blue power module 
that passes the analog command voltage signals from the MultiQ (D/A, A/D converter) board to 
the table and passes back the accelerometer analog measurement signals. The experiment was 
built and run in the SHM and Control Lab at the University of Southern California (USC). 

 
Fig. 6-1. The shaking table with the 2DOF shear building structure mounted on it 

The components of the experiment, in general, include the shaking table, 2DOF shear 
building model, digital controller (MultiQ I/O) board, the power module for the table, PC 
computer, three accelerometers and two sets of steel springs necessary to replicate the various 
stiffness levels that would be achieved with VSDDs in a real-world application. The computer 
used in the experiment is a Windows 98 466MHz Pentium 3. 



 38 

6.2.1 Experiment Steps 
The experiment goal can be summarized in identifying damage in an experimental 2DOF 

structure composed of the shear building structure and two pairs of weak springs per floor, acting 
as bracing to the structure, as shown in Fig. 6-1. The damage in the structure will be effected by 
changing the stiffness of one of the two stories by removing a pair of the weak diagonal bracing 
springs.  

The damage identification problem is solved once with no VSDDs included in the system 
(conventional structure) and then again when VSDDs exist in the system. In the course of the 
experiment, the additional forces induced by the VSDDs in the system are replicated by adding 
strong springs in the diagonal bracing with different configurations giving different stiffness 
levels. The identification process, in each damage case, is performed using four sets of measured 
ground and floor absolute accelerations data, obtained using four different configurations of the 
strong springs. For fairness in comparison, the conventional structure approach uses the same 
amount of measured data. 

The 2DOF structure, during the experiment, is subjected to ambient ground excitation 
induced by the shake table. The ambient ground excitation is generated in two ways: by a band-
limited white noise (BLWN) ground excitation with a cutoff frequency of approximately 20Hz, 
and by a filtered BLWN using the Kanai-Tajimi filter to simulate ground effects (Soong and 
Grigoriou, 1993; Ramallo et al., 2002). 

Once the data is obtained, the Iterative Least Squares Numerator (ILSN) identification 
method is then applied to estimate the stiffness coefficients for both floors of the 2DOF structure. 
This is done in a manner similar to the simulation study in Chapter 3. (The ILSN identification 
technique is not detailed here; the reader is referred to Chapter 2 for more information.) Finally, 
the identification results of the stiffnesses in both stories are compared, before and after damage 
occurs, both with VSDDs in the system and without VSDDs. The experimental results confirm 
the simulation observations showing more accurate damage assessment when using VSDDs. 
6.2.2 Components of the Experiment 

Before introducing the results, the properties and nature of each component of the 
experiment are detailed in the following subsections. 
6.2.2.1 Shaking Table Properties 

The key component of the experiment is a bench-scale shake table, shown in Fig. 6-2. The 
shaking table is a small-scale uniaxial earthquake simulator manufactured by Quanser 
Consulting Inc. The table is located in the SHM and Control Lab at the University of Southern 
California (USC). The specifications of the table have been developed to produce a unit that is 
effective for a wide variety of experiments for civil engineering structures. The table is 
computer-controlled with a user-friendly interface. The design specifications of the shaking 
table, as supplied by the manufacturer, are shown in Table 6-1.  

The nominal operational frequency range of the simulator is 0–20 Hz. Because the shake 
table motor is inherently open loop unstable, position feedback, measured from the shake table 
motor, is employed to stabilize the table (Christenson et al., 2003). 
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Fig. 6-2. Plan view of the shaking table 

 

 

Table 6-1. Design Specifications of the Shaking Table 

Specification Value Unit 

Shake table system overall dimensions (L×W×H)  61×46×13  cm 
Shake table system mass 27.2 kg 

Table dimensions (payload area), (L×W) 46×46 cm 
Maximum payload at 2.5g  15 kg 

Peak Displacement ±7.5 cm 
Operational bandwidth 20 Hz 

Peak velocity 83.8 cm/s 
Peak acceleration 24.5 m/s2 

Accelerometer range ±49 m/s2 
Accelerometer sensitivity 1/9.81 Vs2/m 
Lead screw spread pitch 12.7 mm/rev 

Brushless servo motor power 745.7 W 
Maximum continuous current  12.5 A 

Motor maximum torque 1.65 N-m 
Linear bearing load carrying capability 131.5  kg 

Linear bearing life expectancy (total travel) 6350 km 

Leadscrew encoder resolution 4096 counts/rev 
3.1 µm/count 
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6.2.2.2 Digital Controller 
The digital controller, used in the experiment, is the MultiQ I/O board 

(http://www.quanser.com/English/html/solutions/fs_soln_hardware.html) with the WinCon 
(http://www.quanser.com/English/html/solutions/fs_soln_software_wincon.html) real time 
controller installed in a Windows computer. The MultiQ interface board is connected to the 
MultiQ I/O board by a ribbon cable, and to the power module that is, in turn, connected to the 
shake table. The extended terminal of the MultiQ interface board, as shown in Fig. 6-3, has 
13 bit analog/digital (A/D) and 12 bit digital/analog (D/A) connections with eight input and eight 
output analog channels. Eight digital encoders are also available. The table control algorithm is 
developed using SIMULINK (1999) under MATLAB® 5.3 and executed in real time using the 
WinCon software. The SIMULINK code is converted to C++ code using the Real Time workshop 
in MATLAB® and interfaced through the WinCon software to run the control algorithms on the 
CPU of the PC (Quanser Consulting, 1995; Christenson et al., 2003). 

 
Fig. 6-3. Plan view of the extended terminal of the MultiQ interface board 

6.2.2.3 2DOF Structure 
A 2DOF shear building structure, shown in Fig. 6-1, is the test bed of this experiment. The 

structure is composed of two vertical aluminum plates in each story, with thick plexi-glass plates 
at the bottom, first and second stories of the structure to connect the vertical plates. The 
horizontal plexi-glass plates and the vertical aluminum plates are fixed to each other by three 
8-32 UNC bolts in each side at each level. The interstory height is 490 mm.  

The experimental structure also includes two pairs of weak steel springs located in each 
story as shown in Fig. 6-4. Including these weak springs as part of the experimental structure 
allows inducing damage in the structure, by removing one or two of these pairs, without 
damaging the original structure. Each pair of the weak springs represents about 7.38 % of the 
estimated stiffness of each story of the original structure.  

Prior to experimentation, the 2DOF structure was disassembled so that its dimensions and 
measurements could be recorded. A caliper was used to measure the thickness of the structure’s 
components. The lengths, widths, and heights were measured using a measuring tape with 
accuracy of 1/32 of an inch. An electronic scale, with measurement sensitivity 1 gm, was used to 
weigh each component of the structure. Table 6-2 lists the measured dimensions in centimeters 
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and masses in kilograms. It is important to note that the mass tabulated for the plexi-glass plate, 
also includes the mass of the screws, washers, fastener plates, and accelerometers located at the 
corresponding level. The weak springs are manufactured by Century Spring Corp. (Los Angeles) 
and have vendor stock #80039. The physical properties of the weak steel springs, as per the 
manufacturer’s catalogue, are shown in Table 6-3.  

 
Fig. 6-4. Front view of the experimental 2DOF structure including the added weak steel springs  

Table 6-2. Measured Dimensions and Masses of the 2DOF Structure 

 Mass (kg) Length (cm) Width (cm) Thickness (cm) 

Plexi-glass plate at 
shake table level 0.654 30.48 10.80 1.24 

Plexi-glass plate at 
1st story level 0.654 30.48 10.80 1.24 

Plexi-glass plate at 
2nd  story level 0.654 30.48 10.80 1.24 

Vertical Aluminum 
Plates (1st story) 0.236 50.17 10.80 0.18 

Vertical Aluminum 
Plates (2nd story) 0.236 50.17 10.80 0.18 

Table 6-3. Physical Properties of Weak Spring #80039 as per Manufacturer Catalogue 

Stock 
No. 

Outer 
Diameter 

(mm) 

Length without 
Hooks (mm) 

Stiffness 
(N/m) 

Initial 
Tension 

(N) 

Suggested Max. 
Deflection (mm) 

Suggested 
Max. 

Load (N) 

80039 2.39 25.40 90.00 0.30 37.00 3.60 
 
For the sake of accuracy in the processing of results, the stiffnesses of the weak springs are 

verified by applying an additional test using a spring tester at the manufacturer main office (see 
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Appendix A for manufacturer test reports). The tests are applied on two pairs of the weak 
springs. One of the two pairs is the one removed from the first story to replicate damage there, 
and the other pair is the one removed from the second story to replicate damage there. The 
results of the tests are shown in Table 6-4. It is found that, based on the verification tests results, 
that the mean stiffness of the weak springs (#80039) is 83.11 N/m, which is less than that 
documented in the catalogue. Thus, a pair of the weak springs represents 7.38% of the estimated 
overall stiffness of each floor of the experimental 2DOF structure. The configurations of the 
weak springs pairs in the structure, in order to replicate damage in the structure, are shown in 
Table 6-5. 

Table 6-4. Weak Spring (#80039) Stiffness Test Results Supplied by Manufacturer  

Spring #80039 Location Stiffness (N/m) 
Sample 1 1st story 83.46 
Sample 2 1st story 82.41 
Sample 3 2nd story 82.06 
Sample 4 2nd story 84.51 

Table 6-5. Different Configurations of Spring Pairs in the 2DOF Structure to Replicate Damage in 
the Structure 

 Case Location No. of Pairs 

Induced 
Damage 

No damage 1st story 2 pairs 
2nd story 2 pairs 

7.38% damage in 1st 
story 

1st story 1 pair 
2nd story 2 pairs 

7.38% damage in 2nd 
story 

1st story 2 pairs 
2nd story 1 pair 

6.2.2.4 Accelerometers 
The resulting response of the structure during the experiment is measured by 

accelerometers as shown in Fig. 6-5. One accelerometer is fixed to the table base level. Another 
two are fixed to each of the two stories in the middle bottom of the plexi-glass plates at each 
story. The range of the accelerometers is ± 5g with an output of ± 5 volts. Each accelerometer is 
connected via cable to the power module which is, in turn, connected to the MultiQ® unit. 

 
Fig. 6-5. Isometric view of the mounted accelerometer  
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6.2.2.5 Springs Representing VSDDs 
The theoretical simulations in Chapter 3 (e.g., the 2DOF bridge model problem) show that 

using higher VSDD stiffness to story stiffness ratio improves the results considerably. For the 
case of the experimental structure, the small cross-section of the aluminum plates limits the 
feasible added stiffness per floor because too much added vertical load could cause the vertical 
plates to buckle. Consequently, the springs used to represent the additional forces exerted by 
VSDD are chosen to have stiffness of the same order as that of the columns per story. Therefore, 
Century Spring Corp. spring stock number #80222 is chosen. The physical properties of this stiff 
spring, from the manufacturer catalogue, are shown in Table 6-6. 

Fig. 6-6 shows the experimental structure with the stiff springs attached. Due to the short 
lengths of the springs, steel links are used to connect the springs to aluminum connections as 
shown in Detail A, Fig. 6-7, at each joint of the 2DOF structure. The springs are staggered across 
the depth of the structure, as shown in Detail B, Fig. 6-8, so that the springs do not rub against 
each other. To replicate the effect of varying forces by VSDDs, the stiff spring pairs are added in 
four configurations. Table 6-7 shows the different configurations of the stiff spring pairs in the 
2DOF structure. 

Table 6-6. Physical Properties, as per Manufacturer Catalogue, of Stiff Springs Used to Replicate 
the Effect of VSDD Forces  

Stock 
No. 

Outer 
Diameter 

(mm) 

Length 
without 

Hooks (mm) 

Stiffness 
(N/m) 

Initial 
Tension 

(N) 

Suggested Max. 
Deflection (mm) 

Suggested 
Max. 

Load (N) 

80222 4.57 69.90 840.00 3.00 37.00 34.00 

Table 6-7. Different Configurations of Stiff Springs Pairs in the Two Stories of the 2DOF Structure 

Configuration No. No. of Pairs in 1st Story No. of Pairs in 2nd Story 

1 0 0 
2 4 0 
3 4 2 
4 2 4 

Table 6-8. Stiff Spring (#80222) Stiffness Test Results Supplied by Manufacturer 
Spring #80222 Stiffness (N/m) 

Sample 1 989.291 
Sample 2 974.563 
Sample 3 962.464 
Sample 4 978.069 
Sample 5 991.396 
Sample 6  969.653 
Sample 7  993.499 
Sample 8 980.875 
Sample 9 980.875 
Sample 10 966.146 
Sample 11 963.165 
Sample 12 967.549 
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Fig. 6-6. Experimental structure with springs representing VSDDs

Fig. 6-7. Detail (A) showing aluminum 
connections and steel link 

Fig. 6-8. Detail (B) showing staggered 
springs connected by steel link 

The reason for even numbered spring pairs per configuration, in each story, is to minimize 
any coupling of the transverse modes with those of torsion. The results obtained in system 
identification with the stiff springs included in the structure are compared to the case without any 
stiff springs in either of the two stories (conventional structure).

Since an accurate estimate of the VSDD stiffness is required in the identification, spring 
stiffness tests are performed by the manufacturer on the stiff springs (#80222). (See Appendix A 
for the test report by the manufacturer.) During the experiment, a maximum of six pairs are 
required (Table 6-7). Thus, the twelve springs forming these six pairs are tested to obtain the 
stiffnesses as shown in Table 6-8. The results show differences from those documented in the 
manufacturer catalogue. The measured stiffnesses are the ones used in the identification process. 

Where Table 6-7 shows four pairs of stiff springs in a story, they are samples 1,3,4,5,6,7,8, 
and 12 in Table 6-8. Where Table 6-7 shows two pairs, they are samples 2, 9, 10 and 11.
6.2.3 Modeling and Stiffness Calculations for the Experimental Structure

A critical precursor to SHM is the development of an accurate dynamic model of the 
structural system. For this study, the approach used for system identification is to construct a 
mathematical model to replicate the input/output behavior of the system (Dyke et al., 1996). The 
model assumed here is a shear-building model. Thus, in the calculation of the stiffness for the 

Detail (B)

Det
ail (A)
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first and second floors, the total stiffness is considered the sum of the columns’ stiffnesses and 
the additional equivalent stiffness due to spring pairs.  Accordingly, the stiffness of each story is 
calculated from 

 kstory = kcol
nc

∑
"

#
$

%

&
'+ np ×2× ks × cos2θ  (6-1) 

where nc =2 is the number of columns, kcol  is the stiffness of each vertical aluminum plate. The 
stiffness of each spring is ks  and np  is the number of spring connections pairs.  θ  is the angle of 
inclination of the spring, calculated from 

 θ = tan−1(B / h)  (6-2) 

where B is the horizontal width of the 2DOF structure and h is the interstory height of each story 
of the 2DOF structure. 

EAL , the modulus of elasticity of aluminum (material of the plates), is taken as 75GPa. All 
cross sections of the aluminum and plexi-glass plates are rectangular. Thus, the moment of 
inertia of each plate can be calculated from 

 I = bt
3

12
 (6-3) 

where t is the thickness of the plate and b is the plate width. Consequently, the stiffness matrix 
for the undamaged structure is 

 K =
24EALIAL

h3
+ 4× k80039 × cos2θ
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where ALI  is the moment of inertia of each of the aluminum plates and k80039  is the stiffness of 
the stiff spring #80039. Note that this stiffness matrix is based on the measured dimensions and 
assumed material properties and may not be exact due to the difference between actual and 
assumed material properties and modeling idealization. 
6.2.4 Generation of Simulated Ground Acceleration 

During the shake table experiment, the laboratory structure is assumed subjected to ambient 
ground excitation induced by the shake table. The ambient ground excitation is generated in two 
ways: by a band-limited white noise (BLWN) ground excitation with a cutoff frequency of 20Hz 
and by a filtered band-limited white noise (FBLWN) using the Kanai-Tajimi filter (Soong and 
Grigoriou, 1993; Ramallo et al., 2002). The procedure for obtaining each excitation type is 
explained in the following paragraphs. 
6.2.4.1 Band-Limited White Noise (BLWN) Generation 

The SIMULINK toolbox under MATLAB® 5.3 is used for designing the excitation model that 
commands the shake table to generate white noise ground acceleration. The software WinCon 
3.1, supplied by the manufacturer of the shake table (Quanser), uses the SIMULINK toolbox to 
generate models and compile them using C++. Fig. 6-9 shows the BLWN acceleration generator 
model used in the experiment. 

The generator model of white noise ground acceleration is designed such that a BLWN 
displacement is commanded to the shake table. Theoretically, the commanded white noise 
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displacement should produce BLWN acceleration. However, due to noise resulting from 
imperfections, frequency dependence of table dynamics and nonlinearities in the table system, 
this is not the case. Thus, the commanded BLWN displacement to the table should be filtered 
through some frequency domain filters in order to obtain the desired white noise ground 
acceleration, and to enforce table safety and limitations. Consequently, two filters (Filter_1 and 
Filter_2 in Fig. 6-9) are added to the designed generator SIMULINK model. The first filter 
(Filter_1) ensures that the power spectral density (PSD) of the resulting table acceleration has a 
constant magnitude in the frequency domain. The second filter (Filter_2) is a low pass filter that 
limits the effective frequency range of the table motion with a cutoff frequency at 20 Hz. For the 
safety of the table, the magnitude of the commanded displacement is scaled so as not to exceed 
one inch, and its magnitude is only allowed to ramp up at the start of the table motion. 

Fig. 6-9. SIMULINK model for generation of band-limited white noise ground acceleration using the 
shaking table

Fig. 6-10 shows a sample time history of the generated ground acceleration as measured by 
the accelerometer located on the table. The power spectral density (PSD) of this sample ground 
acceleration is shown in Fig. 6-11. (The sampling frequency is 1000 Hz.)

Fig. 6-10. Sample 4-minute realization of the band-limited white noise acceleration at table level

The Hanning window with an overlap of 75% between the consecutive data samples is used for 
the evaluation of the PSD. To obtain a correct PSD, the time history was detrended to remove 
any DC gains that may exist due to any static charges or manufacturing defects in the 
accelerometers.
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Fig. 6-11. PSD magnitude of the generated BLWN ground acceleration

6.2.4.2 Filtered Band-Limited White Noise (FBLWN) Generation
For a more realistic loading model to replicate ground motion, it is better to consider the 

effect of the soil on the propagation of ground vibrations. A good assumption for the experiment 
applied here is to consider the soil as a filter through which the vibrations pass before reaching 
the location of interest. This assumption, however, is complicated by the fact that the soil 
conditions and layers are different in different site locations. Thus, the approximation here 
considers a simple stationary representation of the soil that was originally proposed by Kanai 
(1957) and Tajimi (1960), who suggested that surface ground acceleration can be approximated 
by the motion of a simple oscillator with a concentrated mass supported by a linear spring and a 
dashpot and subjected to a white noise excitation (bedrock acceleration) of spectral density 0S .  
Thus, the power spectral density of the absolute surface ground acceleration becomes
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where g! and g! are the natural frequency and the damping ratio of the assumed oscillator 
determined by the characteristics of the local ground conditions. The intensity 0S of the 
excitation is determined by the strength of the excitation waves (Soong and Grigoriou, 1993). 
The Kanai-Tajimi model is widely used as an earthquake excitation for engineering structures 
because of its ability to simulate earthquake-induced ground motions in a very simple way.

To use the Kanai-Tajimi model, the three parameters, namely g! , g! , and 0S , are 
estimated from representative earthquake records by means of statistical estimation procedures. 
Thus, an approximation based on the study of frequency content of a number of two strong 
ground-motion records each in the USA and Japan is considered. In the experiment here, the 
natural frequency of the oscillator, g! , is taken equivalent to 17 rad/s; the oscillator damping 
ratio g! is taken equivalent to 0.3 (Ramallo et al., 2002). Fig. 6-12 shows the frequency 
response of this Kanai-Tajimi filter used in the experiment.
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Fig. 6-12. Frequency response of the Kanai-Tajimi filter used in the experiment

6.2.5 Determination of the Transfer Function from Measurement Data and 
Identifying the Structure

The ILSN identification method (previously summarized in Chapter 2) used here attempts 
to match a parametric model of a transfer function to measured transfer function data. To apply 
the ILSN identification technique, the experimental transfer function needs to be obtained. Thus, 
based on the measurement acceleration I/O data (Bendat and Piersol, 2000), the transfer function 
from the ground acceleration excitation input to the absolute acceleration outputs at the first and 
the second stories can be evaluated. In the application here, the input u(t) to the structure is the 
measured table (ground) accelerations data, and the measured first and second story accelerations 
are the outputs y1(t) and y2 (t) , respectively. The PSD of the acceleration input u(t) is  

Suu(!) =U!(!)U(!) (6-6)

The cross-spectral density (CSD) function between the table acceleration and the measured 
story accelerations are 

Sy1u(!) =U!(!)Y1(!)        and        Sy2u(!) =U!(!)Y2 (!) (6-7)

Finally, the transfer functions H1(!) and H2 (!) from the ground acceleration input to the 
absolute accelerations of the two floors are evaluated from the ratio between the CSDs and PSD 

H1(!) =
Sy1u(!)
Suu(!)

         and         H2 (!) =
Sy2u(!)
Suu(!)

(6-8)

Thus, having the experimental transfer functions, the ILSN technique can be used to obtain the 
values of the structural parameters by minimizing the residual error between the experimental 
and the theoretical parametric transfer functions. 

6.3 Data Analysis
The main task of the experiment is to detect a small amount of damage  (about 7.38% of the 

estimated story stiffness) located in one of the two stories of the structure. The accuracy of the 
identified damage is then compared between the cases when VSDDs are used in a structure and 
when they are not. The damage is defined as a loss in stiffness. There are two damage cases, one 
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where a pair of weak springs are removed from the first story (to simulate damage there), and 
one removing a pair of weak springs from just the second story. 
6.3.1 Experimental Challenges and Solutions 

The main task of the experiment is complicated by different factors. These difficulties 
include accuracy of modeling, nonlinearities in the experiment, the sensitivity of the 
accelerometers (sensor noise), and unmeasured vibrations coming from the ground under the 
table or from connecting cables. Moreover, the memory of the computer, used in the storage of 
the data, is limited. Consequently, the amount of data that can be stored is also limited. These 
problems add to the complexity of the identification problem. 

To overcome some of these challenges, some actions were taken. For example, the 
experiment was performed in the basement of a building in order to minimize the ground 
vibrations under the table and to avoid building vibrations encountered in higher levels. 
Moreover, the level of excitation is kept small enough that the 2DOF structure response is linear 
and the weak and stiff springs in the bracings exhibit only elastic behavior. Further, the weak and 
stiff springs are pretensioned to nearly half their maximum elastic deflection so they are always 
in tension during the experiment and, thus, the bracing forces exerted by the springs never 
vanish. In addition, all flexible cables connected to the structure (such as those connected to the 
accelerometers) in the first and the second stories are banded and fixed to the structure, as shown 
in Fig. 6-4. 

To ensure good structure modeling, the 2DOF structure is designed as a shear building 
where the moment of inertia of the plexi-glass plate is 327 times that of the aluminum vertical 
plate. Moreover, all weights and dimensions are accurately measured.  
6.3.2 Data Processing 

The excitation generator models of the table are designed to excite the structure for 3800 
seconds continuously (the limits of memory in the laboratory computer). The stored data is 
divided into non-overlapping two-minute samples of data or six-minute samples of data; in both 
cases, ten seconds is omitted between each sample to eliminate coherence between successive 
samples. The data is split into a number of samples, each of which is used to generate one set of 
parameter estimates, in order to get a statistical distribution of the identified structure parameters. 
The sample duration is varied in order to observe the effect of the amount of data in each sample 
on the identification of the structure parameters. Each of the samples is processed in a separate 
identification problem for the unknown structure parameters, which are here assumed to be only 
the stiffness coefficients. Thus, it is assumed that the masses and damping coefficients of the two 
stories of the structure are known a priori. The masses of each of the two floors are considered 
equivalent to 1.125 kg. Based on the measurements recorded in Table 6-2. The logarithmic 
decrement method is used to obtain modal damping ratios of the 2DOF structure. The results of 
testing the damping ratios indicate a 1% damping in the first and second modes. In addition, the 
natural frequencies of the structure without adding the weak springs are measured and found to 
be 2.197 Hz and 6.24 Hz respectively. Consequently, the uncoupled damping coefficients for the 
two floors are computed to be 0.2 and 0.5 N·sec/m, respectively. 

The ILSN method requires initial estimates of the unknown stiffness parameters. Using the 
dimensions of the aluminum vertical plates (Table 6-2) and assuming the modulus of elasticity of 
Aluminum to be 75 GPa, the initial estimates of the stiffnesses of the first and second stories 
(including the springs) are computed from Eq. (4-1) to be 657.94 N/m. 
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6.3.3 Damage Identification Results 
The damage, within the context of this research, is defined as the loss in stiffness after 

damage. Thus, the mean and the standard deviation (STD) of the identified values of the first and 
second story stiffnesses, k1 and k2, respectively, are evaluated for the undamaged and damaged 
cases. Fig. 6-17 to Fig. 6-32 show the error in the identified first and second story stiffnesses, k1 
and k2, relative to the assumed stiffnesses which are based on the material properties. This is 
done for both the undamaged and damaged cases; in both cases, a one-standard deviation ellipse 
is shown in the figures. The shift in the one-standard deviation ellipse, before and after damage, 
indicates damage quantity and location in any of the graphs. Moreover, Table 6-10 to Table 6-24 
give the percentage of damage as the difference in stiffness between mean values of the 
identified stiffnesses, before and after damage, relative to the assumed values of the stiffnesses 
since it is a constant reference. In order to compare between the VSDD and conventional 
structure approaches, the resulting identified percentages of damage are compared to the exact 
ones. 

6.4 Resulting Transfer Functions 
To show the success of the ILSN identification technique in estimating the stiffness of the 

two stories of the 2DOF structure, the estimated theoretical TF of one two-minute sample and 
one six-minute sample data, based on the values of the identified stiffness parameters of these 
samples, are demonstrated here in contrast to their experimental counterparts (computed as per 
Section 6.2.5). This is applied for both the VSDD and conventional structure approaches, 
respectively. The TFs here represent a single sample case, either two-minute (Fig. 6-13 and Fig. 
6-14) or six-minute (Fig. 6-15 and Fig. 6-16), for the undamaged structure when subjected to 
FBLWN ground excitation. The TF identification for the sample studied in this section is found 
to be successful for both the VSDD and the conventional structure approaches. This was not 
always the case for all samples when using the conventional structure approach. 
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6.4.1 Two-minute sample
As shown in Fig. 6-13 and Fig. 6-14, the identified theoretical TFs have done very well in 

tracing the experimental one for both the VSDD and the conventional structure approaches. This 
is the case despite the considerable noise in the experimental TFs. However, as will be shown in 
the coming sections, for the conventional structure approach, the identification is not always 
ideal. 

Fig. 6-13. Experimental transfer functions versus identified transfer functions of the 2DOF 
experimental structure without damage, using VSDDs approach, for one 2-min sample under 

FBLWN excitation

Fig. 6-14. Experimental transfer functions versus identified transfer functions of the 2DOF 
experimental structure without damage, using conventional structure approach, for one 2-min 

under FBLWN excitation
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6.4.2 Six-minute sample
Similarly, the identified theoretical TFs, for the VSDD and conventional structure 

approaches, are successful in defining the system in one sample of the six minutes data samples 
as shown in Fig. 6-15 and Fig. 6-16. This is expected due to better averaging of the PSD of the 
inputs and the CSD functions between the inputs and the outputs for longer duration data 
samples. This, in turn, reduces the noise in the evaluated experimental TFs. However, this is not 
always the case for the conventional structure approach, as will be shown later. 

Fig. 6-15. Experimental transfer functions versus identified transfer functions of the 2DOF 
experimental structure without damage, using VSDDs approach, for one 6-min sample under 

FBLWN excitation

Fig. 6-16. Experimental transfer functions versus identified transfer functions of the 2DOF 
experimental structure without damage, using conventional structure approach, for one 6-min 

sample under FBLWN excitation
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6.5 Damage Identification Results for BLWN Excitation 
6.5.1 Two-Minute Data Samples 
6.5.1.1 Damage in First Story 

Fig. 6-17 and Fig. 6-18 show the results of the identification, with VSDDs and without, 
respectively, using two-minute samples for damage in the first story. Fig. 6-17 shows that the 
VSDD approach is successful in identifying the damage in the first story. In contrast, Fig. 6-18 
indicates that the conventional structure approach is not successful in determining the damage; in 
fact, nearly half of the samples give quite inaccurate estimates for the undamaged stiffnesses. 
This, consequently, leads to a huge bias in the mean estimates of stiffnesses, and large variations, 
as shown in. In addition, one estimate after damage, using the conventional structure approach, 
gives a dramatically different result, exaggerating the variance. Table 6-10 shows that the 
damage is well estimated with relatively low variation using the VSDD approach whereas, in the 
conventional structure approach, the damage location is incorrect and the severity is exaggerated. 

 
 

Table 6-9. Mean and COV† Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 
of Damage in 1st Story (BLWN, 2 min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 609.380 1.959 562.009 1.992 636.816 4.475 697.215 23.672 

k2 801.629 0.336 801.958 0.441 756.166 6.960 621.486 30.045 

Table 6-10. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 1st Story Only (BLWN, 2 min) 

 Damage 
Location 

Actual  % of 
Damage 

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 7.36 7.20 2.49 
2nd 0 0.05 0.68 

Conventional 
Structure App. 

1st 7.36 -9.18 25.46 
2nd 0 20.47 29.49 

 
  

                                                
† COV = Coefficient of Variation 
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Fig. 6-17. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in first story, (BLWN, 2-min samples, VSDDs approach)

Fig. 6-18. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 1st story, (BLWN, 2-min samples, Conventional Structure approach)
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6.5.1.2 Damage in Second Story 
The damage in the second story is usually well identified for both the VSDD and the 

conventional structure approaches as demonstrated in Fig. 6-19 and Fig. 6-20. However, using 
the conventional structure approach, very inaccurate stiffness estimates occurred in one sample 
for the undamaged structure case, causing large variance as shown in Table 6-11. This, in turn, 
affects the credibility of the identified damage severity for the conventional structure approach. 
This is represented in Table 6-12 in terms of large standard deviation, bigger than the identified 
damage, leading to doubts about the results. In contrast, the VSDD approach supplied a good 
identification of damage in the second story with very small variation. Moreover, the indication 
of stiffening in the first story, identified after damage in both approaches, by the negative 
damage mean is suspect since the magnitude of stiffening is smaller than the standard deviation.  

 
Table 6-11. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 

of Damage in 2nd Story (BLWN, 2 min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 609.380 1.959 615.433 1.414 636.816 4.475 641.553 0.704 

k2 801.629 0.336 754.192 0.690 756.166 6.960 708.729 0.418 
 
 

Table 6-12. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 2nd Story Only (BLWN, 2 min) 

 Damage 
Location 

Actual  % of 
Damage  

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 0 -0.92 2.25 
2nd 7.39 7.21 0.89 

Conventional 
Structure App. 

1st 0 -0.72 4.39 
2nd 7.39 7.21 8.01 
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Fig. 6-19. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (BLWN, 2-min samples, VSDDs approach)

Fig. 6-20. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (BLWN, 2-min samples, Conventional Structure approach)
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6.5.2 Six-Minute Data Samples 
6.5.2.1 Damage in First Story 

Both approaches, VSDD (Fig. 6-21) and conventional structure (Fig. 6-22), did extremely 
well in identifying the damage using six-minute samples when the damage is in the first story. 
This shows that a longer sample duration improved the results of both approaches, particularly 
for the conventional structure approach. However, the VSDD approach still give better means. 
The VSDD approach estimates the damage at 7.38% — very close to the exact of 7.36% — 
whereas the conventional structure approach gives 7.43%. In Table 6-14, the extra 0.97% 
stiffness estimated in the second story for the conventional structure approach case may be 
considered significant compared to the 0.29% standard deviation, in contrast with an 
insignificant 0.19% extra stiffness with a 0.36% standard deviation when using VSDDs.  

 
 

Table 6-13. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 
of Damage in 1st Story (BLWN, 6 min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 613.328 0.895 564.772 1.009 632.408 0.165 583.523 0.562 

k2 800.642 0.157 801.892 0.248 765.509 0.117 771.891 0.222 
 
 

Table 6-14. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 1st Story Only (BLWN, 6 min) 

 Damage 
Location 

Actual  % of 
Damage 

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 7.36 7.38 1.20 
2nd 0 -0.19 0.36 

Conventional 
Structure App. 

1st 7.36 7.43 0.52 
2nd 0 -0.97 0.29 
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Fig. 6-21. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 1st story, (BLWN, 6-min samples, VSDDs approach)

Fig. 6-22. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 1st story, (BLWN, 6-min samples, Conventional Structure approach)
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6.5.2.2 Damage in Second Story 
With damage in the second story and using six-minute samples, the VSDD and the 

conventional structure approaches did well as shown in Fig. 6-23 and Fig. 6-24, but the VSDD 
approach is clearly superior. With the conventional structure approach, despite very low 
variations in stiffness estimates as shown in Table 6-15, the first story appears to have stiffened 
by 1.56% and the damage in the second story has been overestimated, as shown in Table 6-16. 
The very low standard deviation in the conventional structure approach suggests it may be more 
accurate, but that is clearly misleading. 

 
 

Table 6-15. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 
of Damage in 2nd Story (BLWN, 6 Min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 613.328 0.895 616.881 0.729 632.408 0.165 642.672 0.282 

k2 800.642 0.157 753.666 0.370 765.509 0.117 708.597 0.180 
 
 

Table 6-16. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 2nd Story Only (BLWN, 6 min) 

 Damage 
Location 

Actual  % of 
Damage 

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 0 -0.54 1.08 
2nd 7.39 7.14 0.46 

Conventional 
Structure App. 

1st 0 -1.56 0.32 
2nd 7.39 8.65 0.24 
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Fig. 6-23. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (BLWN, 6-min samples, VSDDs approach)

Fig. 6-24. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (BLWN, 6-min samples, Conventional Structure approach)
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6.6 Damage Identification Results for FBLWN Excitation 
6.6.1 Two-Minute Data Samples 
6.6.1.1 Damage in First Story 

Similar to the case of BLWN ground excitation with two-minute samples, the VSDD 
approach is found, with FBLWN excitation, to be able to identify the damage accurately in the 
first story whereas the conventional structure approach fails, as is clear from Fig. 6-25 and Fig. 
6-26. Table 6-17 also shows that the damage deviations are very large for the conventional 
structure approach. In addition, from Table 6-18, it can be observed that the damage location is 
swapped and estimated to be severe in the second story when no damage has actually occurred 
there. 

 
 

Table 6-17. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 
of Damage in 1st Story (FBLWN, 2 Min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 606.222 1.542 559.180 1.884 629.776 0.481 687.148 17.415 

k2 802.485 0.300 803.340 0.369 764.061 0.264 582.010 28.620 
 
 

Table 6-18. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 1st Story Only (FBLWN, 2 min) 

 Damage 
Location 

Actual  % of 
Damage 

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 7.36 7.15 2.14 
2nd 0 -0.13 0.58 

Conventional 
Structure App. 

1st 7.36 -8.72 18.19 
2nd 0 27.67 25.32 
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Fig. 6-25. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 1st story, (FBLWN, 2-min samples, VSDDs approach)

Fig. 6-26. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 1st story, (FBLWN, 2-min samples, Conventional Structure approach)
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6.6.1.2 Damage in Second Story 
With damage in the second story, both approaches, the VSDD and the conventional 

structure, did well also, as shown in Fig. 6-27 and Fig. 6-28. However, the conventional structure 
approach overestimated the damage in the second story and indicates significant stiffening in the 
first story, as shown in Table 6-20. However, these are accompanied by very small deviations, 
which falsely gives credibility to these results and is misleading. On the contrary, the VSDD 
approach gives a very good estimate of damage in the second story. While the VSDD approach 
estimates some extra stiffness in the first story, it is less than the deviation, which indicates that 
this extra stiffness is probably spurious.   

 
 

Table 6-19. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 
of Damage in 2nd Story (FBLWN, 2 min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 606.222 1.542 613.131 1.033 629.776 0.481 638.527 0.658 

k2 802.485 0.300 754.455 0.579 764.061 0.264 708.860 0.435 
 
 

Table 6-20. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 2nd Story Only (FBLWN, 2 min) 

 Damage 
Location 

Actual  % of 
Damage 

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 0 -1.05 1.72 
2nd 7.39 7.30 0.76 

Conventional 
Structure App. 

1st 0 -1.33 0.79 
2nd 7.39 8.39 0.56 
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Fig. 6-27. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (FBLWN, 2-min samples, VSDDs approach)

Fig. 6-28. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (FBLWN, 2-min samples, Conventional Structure approach)
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6.6.2 Six-Minute data samples 
6.6.2.1 Damage in First Story 

Despite the advantage of having the longer duration six-minute samples, the conventional 
structure approach performs poorly here for damage in the first story with FBLWN excitation. 
As seen in Fig. 6-30, many of the samples are vastly inaccurate for the undamaged case. The 
VSDD approach, on the other hand, is able to identify damage quite well and with very small 
deviations. Table 6-21 and Table 6-22 show that the conventional structure approach gives 
heavily biased estimates together with large deviation, in contrast with the VSDD approach 
which gives very good estimates with small deviations. 

 
 

Table 6-21. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 
of Damage in 1st Story (FBLWN, 6 min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 608.854 1.013 562.272 0.940 630.632 0.193 645.830 10.809 

k2 801.958 0.156 803.143 0.249 763.864 0.132 623.723 25.013 
 
 

Table 6-22. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 1st Story Only (FBLWN, 6 min) 

 Damage 
Location 

Actual  % of 
Damage 

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 7.36 7.08 1.23 
2nd 0 -0.18 0.36 

Conventional 
Structure App. 

1st 7.36 -2.31 10.61 
2nd 0 21.30 23.71 
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Fig. 6-29. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 1st story, (FBLWN, 6-min samples, VSDDs approach)

Fig. 6-30. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 1st story, (FBLWN, 6-min samples, Conventional Structure approach)
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6.6.2.2 Damage in Second Story 
Fig. 6-31 and Fig. 6-32 indicate that both the VSDD and the conventional structure 

approaches did well in identifying the damage in the second story for six-minute samples with 
FBLWN excitation. However, the conventional structure approach overestimated the damage in 
the second story, and gave statistically significant stiffening in the first story, as shown in Table 
6-24. This is, again, accompanied with very small variations in stiffness and damage estimates, 
which is misleading about the credibility of such results. In the meantime, the VSDD approach is 
successful in estimating the damage more accurately. 

 
 

Table 6-23. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF Structure for Case 
of Damage in 2nd Story (FBLWN, 6 min) 

 VSDDs Approach Conventional Structure Approach 

 Before 
Damage 

After  
Damage 

Before 
Damage 

After  
Damage 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

Mean 
(N/m) 

COV 
(%) 

k1 608.854 1.013 614.052 0.417 630.632 0.193 638.790 0.286 

k2 801.958 0.156 753.929 0.322 763.864 0.132 709.058 0.168 
 
 

Table 6-24. Mean and STD Estimates of the Identified Damage for 2DOF Structure, Relative to 
Assumed Stiffnesses, in Case of Damage in 2nd Story Only (FBLWN, 6 min) 

 Damage 
Location 

Actual  % of 
Damage 

Relative Identified Damage 
Mean(%) STD(%) 

VSDD App. 
1st 0 -0.79 1.02 
2nd 7.39 7.30 0.42 

Conventional 
Structure App. 

1st 0 -1.24 0.33 
2nd 7.39 8.33 0.24 
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Fig. 6-31. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (FBLWN, 6-min samples, VSDDs approach)

Fig. 6-32. Relative errors in identified stiffnesses of 2DOF structure to assumed ones, before and 
after damage in 2nd story, (FBLWN, 6-min samples, Conventional Structure approach)
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6.7 Overview of results and comments 
Comparing the identified stiffness results obtained using the VSDD and the conventional 

structure approaches, it can be observed that the VSDD approach performed significantly better. 
This is particularly demonstrated with shorter duration data samples. With two-minute data 
samples, the VSDD approach is found to be successful in identifying the damage accurately, 
whether damage exists in either the first or the second story. The identified damage is 
accompanied with small deviations giving credibility to the results. Meanwhile, for the same 
case of two-minute data samples, the conventional structure is found to be unsuccessful in 
identifying damage in the first story. While damage identification is more successful when the 
damage is in the second story, the conventional structure approach often overestimates the 
damage and assigns statistically significant extra stiffness to undamaged stories. 

With longer duration data samples (six-minute), the VSDD approach gives even better 
damage means with much smaller variations. For the conventional structure approach, the 
identified results are improved in some cases compared to the two-minute samples, but often 
with biased mean damage estimates represented by overestimating damage.  

Based on these observations, one can conclude that using the VSDD approach helps 
overcome the noise in the data more efficiently than the conventional structure approach. This 
result confirms experimentally the conclusions in the analytical part of this research comparing 
the two approaches. 
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7 CONCLUSIONS AND RECOMMENDATIONS 
The research introduced in this report studies the improvements in the health monitoring of 

structures that are available by using semiactive variable stiffness and damping devices 
(VSDDs). The work here demonstrates the effectiveness of using VSDDs to improve the 
estimates of structural parameters for SHM and damage detection.  

In general, the research herein is divided into two major parts. The first part focuses on the 
improvements in the identification of the structural parameters when using frequency domain 
identification techniques. The Iterative Least Squares Numerator (ILSN) method is summarized. 
This method approximates the more complicated conventional error in the transfer function and, 
finally, minimizes this error to give fairly accurate estimates through least squares optimization. 
It is shown that, using the ILSN technique in identification of parameters, the variable stiffness 
and damping induced by the semiactive device in the structure helps reduce the variation of the 
estimates of the structural parameters. This was shown in METRANS 01-10 (Johnson and 
Elmasry, 2003) to be the case when using relatively small additional stiffnesses (a fraction of the 
corresponding stories stiffnesses) induced by the semiactive devices. However, when using 
larger induced stiffnesses and damping coefficients than those of the corresponding stories, the 
means of the structural parameter estimates are more effectively improved and their variations 
are found to be substantially reduced. The test beds in the research herein are a 2DOF bridge 
model and two-story and six-story shear building models.  

Moreover, the first part introduces another newly modified technique, INVFLS, which 
identifies the coefficients of the numerator and denominator polynomials of the transfer function 
and uses the resulting values in identifying the stiffnesses and the damping coefficients of the 
structure. The resulting identified parameters from applying this technique consistently confirm 
the improvements obtained in the identification process of the structural parameters in terms of 
reduced variations when using VSDDs. However, the results are not as impressive as those 
obtained from the ILSN technique. In addition, the improvements in the identification of the 
structural parameters are studied in the context of the Eigensystem Realization Algorithm 
(ERA). The ERA is applied with and without the semiactive devices. The results indicate that the 
root mean square error in the identified parameters is clearly reduced by using semiactive 
devices in the structure. 

The second part of this report studies the effect of using variable stiffnesses in an 
experimental structure for improving identified structural parameters. A 2DOF shear building 
structure, composed of horizontal plexi-glass plates, vertical aluminum plates and two pairs of 
soft springs as bracings, is used in the lab experiment. Stiff springs are used in pairs to replicate 
the effect of VSDDs in the structure. The structure is excited through a small-scale shaking table 
in the SHM and Control Lab at the University of Southern California. The excitation takes two 
forms: a band limited white noise and a filtered band limited white noise. The absolute 
accelerations of the shake table and the first and second stories of the experimental structure are 
measured using one accelerometer fixed to each of the three levels. It is assumed that the masses 
and the damping coefficients are known a priori. Damage is incurred in the structure by 
removing a pair of the weak springs. The resulting estimates of the reduction in the story 
stiffness due to damage in the structure indicate more accuracy in the mean estimates when using 
four different configurations of additional stiffnesses (replicating the effect of VSDDs) compared 
to the case of the conventional structure. In addition, using the conventional structure approach 
shows more sensitivity to noise such that the variation in the identified parameters is sometimes 
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much larger than using the VSDD approach. In general, the results of the experimental work are 
consistent with the results from the analytical work since they indicate better mean estimates and 
sometimes considerably less variations when VSDDs are used in the structure. 

Future research studying the improvements in identification of structural parameters, using 
VSDD approach, should study realtime controlled monitoring application in the context of time-
domain techniques such as linear black box models (ARMA, ARMAX models, etc.). The 2DOF 
bridge model can be a good start for such an application. A quadratic cost function, that includes 
the error in the estimated system parameters and the force exerted by the actuator, can be used. 
Further, data from real structures should also be considered, if available. Also, more complicated 
structures should be examined, in order to generalize the VSDD approach. 

Further, some new approaches for using VSDDs to change structural behavior have been 
recently developed by the PI.  This approach uses a substructure identification approach (Zhang 
and Johnson, 2006a), that has an accompanying error approximation, to identify the structural 
parameters.  Further, the approach is directly applicable for using control devices such as VSDDs 
to exploit the source of error, directed by the error approximation, to change the structural 
behavior to dramatically improve the accuracy of structural parameter identification (Zhang and 
Johnson, 2006b). 
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APPENDIX 
This appendix shows the testing reports, by the supplier, of the springs used in the laboratory 
experiments. 
 

Weak Steel Springs Report (spring #80039) 
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Stiff Steel Springs Report (spring #80222) 

 

Tests 1–2, 6–9, and 11–16 correspond to spring samples 1–2, 3–6, and 7–12 in Table 4-8. 
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